
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 281 — #307

i
i

i
i

i
i

Section 2.1 C++11 constexpr Functions

• The requirement to have at least one constexpr constructor that is not a copy or
move constructor is just that: to have at least one. There is no requirement that such
a constructor be invocable at compile time, e.g., it could be declared private, or even
that it be defined; in fact, a deleted constructor (see Section 1.1.“Deleted Functions”
on page 53) satisfies the requirement:
struct UselessLiteralType
{

constexpr UselessLiteralType() = delete;
};

• Many uses of literal types in constexpr functions will require additional constexpr
functions to be defined (not merely declared), such as a move or copy constructor:
struct Lt // literal type having nonconstexpr copy constructor
{

constexpr Lt(int c) { } // valid constexpr value constructor
Lt(const Lt&) { } // nonconstexpr copy constructor

};

constexpr int processByValue(Lt t) { return 0; } // valid constexpr function

static_assert(processByValue(Lt(7)) == 0, "");
// Error, but might work on some platforms due to elided copy

constexpr Lt s{7}; // bracedinitialized object of type Lt

static_assert(processByValue(s) == 0, ""); // Error, nonconstexpr copy ctor

In the code example above, we have a literal type, Lt, for which we have explicitly
declared a nonconstexpr copy constructor. We then defined a valid constexpr func-
tion, processByValue, taking an Lt (by value) as its only argument. Invoking the
function by constructing an object of Lt from a literal int value enables the compiler
to elide the copy. Platforms where the copy is elided might allow this evaluation at
compile time, while on other platforms there will be an error. When we consider using
an independently constructed constexpr variable (i.e., s), the copy can no longer be
elided, and since the copy constructor is declared explicitly to be nonconstexpr, the
compile-time assertion fails to compile on all platforms; see Section 2.1.“constexpr
Variables” on page 302.

• Although a pointer or reference is always (by definition) a literal type, if the type being
pointed to is not itself a literal type, then the referenced object cannot be used during
constant expression evaluation.

281

lorihughes
Line
[blank line]static_assert(processByValue({7}) == 0, ""); // OK, braced-initialized parameter does not create a temporary.

