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constexpr Functions Chapter 2 Conditionally Safe Features

Identifying literal types

Knowing what is and what is not a literal type is not always obvious given all the various rules
we have covered and how the rules have changed from one version of the Standard to another.
Having a concrete way of identifying literal types other than becoming a language lawyer
and interpreting the full Standard definition can be immensely valuable during development,
especially when trying to prototype a facility that we intend to be usable at compile time.
We identify two means for ensuring that a type is a literal type and, often more importantly
for a user, identifying if a type is a usable literal type.

1. Only literal types can be used in the interface of a constexpr function (i.e., either
as the return type or as a parameter type), and any literal type can be used in the
interface of such a function. The first approach one might take to determine if a given
type is a literal type would be to define a function that returns the given type by
value. This approach has the downside of requiring that the type in question also be
copyable or at least movable; see Section 2.1.“Rvalue References” on page 71012:
struct LiteralType { constexpr LiteralType(int i) {} };
struct NonLiteralType { NonLiteralType(int i) {} };
struct NonMovableType { constexpr NonMovableType(int i) {}

NonMovableType(NonMovableType&&) = delete; };

constexpr LiteralType f(int i) { return LiteralType(i); } // OK
constexpr NonLiteralType g(int i) { return NonLiteralType(i); } // Error
constexpr NonMovableType h(int i) { return NonMovableType(i); } // Error

In the above example, NonMovableType is a literal type but is not movable or copyable,
so it cannot be the return type of a function. Passing the type as a by-value parameter
works more reliably and even consistently identifies noncopyable, nonmovable literal
types:
constexpr int test(LiteralType t) { return 0; } // OK
constexpr int test(NonLiteralType t) { return 0; } // Error
constexpr int test(NonMovableType t) { return 0; } // OK

This approach is appealing in that it provides a general way for a programmer to
query the compiler whether it considers a given type, S, as a whole to be a literal type
and can be succinctly written13:
constexpr int test(S) { return 0; } // compiles only if S is a literal type

Note that all of these tests require providing a function body, since compilers will
validate that the declaration of the function is valid for a constexpr function only

12As of C++17, the requirement that the type in question be copyable or movable to return it as a prvalue
is removed; see Section 2.1.“Rvalue References” on page 710.

13As of C++14, we can return void — constexpr void test(S) { } — and omit the return statement
entirely; see Section 2.2.“constexpr Functions ’14” on page 959.
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Section 2.1 C++11 constexpr Functions

when they are processing the definition of the function. A declaration without a body
will not produce the expected error for non-literal-type parameters and return types:
constexpr NonLiteralType quietly(NonLiteralType t); // OK, declaration only
constexpr NonLiteralType quietly(NonLiteralType t) { return t; } // Error

Finally, the C++11 Standard Library provides a type trait — std::is_literal_type
— that attempts to serve a similar purpose14:
#include <type_traits> // std::is_literal_type
static_assert( std::is_literal_type<LiteralType>::value, ""); // OK
static_assert(!std::is_literal_type<NonLiteralType>::value, ""); // OK

The important takeaway is that we can use a trivial test in C++11 (made even more
trivial in C++14) to find out if the compiler deems that a given type is a literal type.

2. To ensure that a type under development is meaningful in a compile-time facility,
confirming that objects of a given literal type can actually be constructed at compile
time becomes imperative. This confirmation requires identifying a particular form of
initialization and corresponding witness arguments that should allow a user-defined
type to assume a valid compile-time value. For this example, we can use the interface
test to help prove that our class, e.g., Lt, is a literal type:
class Lt // An object of this type can be used in a constant expression.
{

int d_value;

public:
constexpr Lt(int i) : d_value(i != 75033 ? throw 0 : i) { } // OK

};

constexpr int checkLiteral(Lt) { return 0; } // OK, literal type

Proving that Lt in the code example above is a usable literal type next involves choos-
ing a constexpr constructor (e.g., Lt(int)), selecting appropriate witness arguments
(e.g., 75033), and then using the result in a constant expression. The compiler will
indicate if our type cannot be constructed at compile time by producing an error:
char x[(Lt(75033), 1)]; // OK, usable in constant expr
static_assert((Lt(75033), true), ""); // OK, " " " "

14Note that the std::is_literal_type trait is deprecated in C++17 and removed in C++20. The
rationale is stated in meredith16:

The is_literal_type trait offers negligible value to generic code, as what is really needed is the
ability to know that a specific construction would produce constant initialization. The core term
of a literal type having at least one constexpr constructor is too weak to be used meaningfully.
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