
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 282 — #308

i
i

i
i

i
i

constexpr Functions Chapter 2 Conditionally Safe Features

Identifying literal types

Knowing what is and what is not a literal type is not always obvious given all the various rules
we have covered and how the rules have changed from one version of the Standard to another.
Having a concrete way of identifying literal types other than becoming a language lawyer
and interpreting the full Standard definition can be immensely valuable during development,
especially when trying to prototype a facility that we intend to be usable at compile time.
We identify two means for ensuring that a type is a literal type and, often more importantly
for a user, identifying if a type is a usable literal type.

1. Only literal types can be used in the interface of a constexpr function (i.e., either
as the return type or as a parameter type), and any literal type can be used in the
interface of such a function. The first approach one might take to determine if a given
type is a literal type would be to define a function that returns the given type by
value. This approach has the downside of requiring that the type in question also be
copyable or at least movable; see Section 2.1.“Rvalue References” on page 71012:
struct LiteralType { constexpr LiteralType(int i) {} };
struct NonLiteralType { NonLiteralType(int i) {} };
struct NonMovableType { constexpr NonMovableType(int i) {}

NonMovableType(NonMovableType&&) = delete; };

constexpr LiteralType f(int i) { return LiteralType(i); } // OK
constexpr NonLiteralType g(int i) { return NonLiteralType(i); } // Error
constexpr NonMovableType h(int i) { return NonMovableType(i); } // Error

In the above example, NonMovableType is a literal type but is not movable or copyable,
so it cannot be the return type of a function. Passing the type as a by-value parameter
works more reliably and even consistently identifies noncopyable, nonmovable literal
types:
constexpr int test(LiteralType t) { return 0; } // OK
constexpr int test(NonLiteralType t) { return 0; } // Error
constexpr int test(NonMovableType t) { return 0; } // OK

This approach is appealing in that it provides a general way for a programmer to
query the compiler whether it considers a given type, S, as a whole to be a literal type
and can be succinctly written13:
constexpr int test(S) { return 0; } // compiles only if S is a literal type

Note that all of these tests require providing a function body, since compilers will
validate that the declaration of the function is valid for a constexpr function only

12As of C++17, the requirement that the type in question be copyable or movable to return it as a prvalue
is removed; see Section 2.1.“Rvalue References” on page 710.

13As of C++14, we can return void — constexpr void test(S) { } — and omit the return statement
entirely; see Section 2.2.“constexpr Functions ’14” on page 959.

282

lorihughes
Cross-Out

lorihughes
Inserted Text
Note that all these tests feature declarations that are also definitions since none of the restrictions on constexpr functions apply to declarations that are not definitions.

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 283 — #309

i
i

i
i

i
i

Section 2.1 C++11 constexpr Functions

when they are processing the definition of the function. A declaration without a body
will not produce the expected error for non-literal-type parameters and return types:
constexpr NonLiteralType quietly(NonLiteralType t); // OK, declaration only
constexpr NonLiteralType quietly(NonLiteralType t) { return t; } // Error

Finally, the C++11 Standard Library provides a type trait — std::is_literal_type
— that attempts to serve a similar purpose14:
#include <type_traits> // std::is_literal_type
static_assert(std::is_literal_type<LiteralType>::value, ""); // OK
static_assert(!std::is_literal_type<NonLiteralType>::value, ""); // OK

The important takeaway is that we can use a trivial test in C++11 (made even more
trivial in C++14) to find out if the compiler deems that a given type is a literal type.

2. To ensure that a type under development is meaningful in a compile-time facility,
confirming that objects of a given literal type can actually be constructed at compile
time becomes imperative. This confirmation requires identifying a particular form of
initialization and corresponding witness arguments that should allow a user-defined
type to assume a valid compile-time value. For this example, we can use the interface
test to help prove that our class, e.g., Lt, is a literal type:
class Lt // An object of this type can be used in a constant expression.
{

int d_value;

public:
constexpr Lt(int i) : d_value(i != 75033 ? throw 0 : i) { } // OK

};

constexpr int checkLiteral(Lt) { return 0; } // OK, literal type

Proving that Lt in the code example above is a usable literal type next involves choos-
ing a constexpr constructor (e.g., Lt(int)), selecting appropriate witness arguments
(e.g., 75033), and then using the result in a constant expression. The compiler will
indicate if our type cannot be constructed at compile time by producing an error:
char x[(Lt(75033), 1)]; // OK, usable in constant expr
static_assert((Lt(75033), true), ""); // OK, " " " "

14Note that the std::is_literal_type trait is deprecated in C++17 and removed in C++20. The
rationale is stated in meredith16:

The is_literal_type trait offers negligible value to generic code, as what is really needed is the
ability to know that a specific construction would produce constant initialization. The core term
of a literal type having at least one constexpr constructor is too weak to be used meaningfully.

283

lorihughes
Cross-Out

lorihughes
Sticky Note
Unmarked set by lorihughes

