
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 286 — #312

i
i

i
i

i
i

constexpr Functions Chapter 2 Conditionally Safe Features

Note that being marked constexpr enables a function to be evaluated at compile time only
if (1) the argument values are constant expressions known before the function is evaluated
and (2) no operations performed when invoking the function with those arguments involve
any of the excluded ones listed above.
Global variables can be used in a constexpr function only if they are (1) nonvolatile const
objects of integral or enumerated type that are initialized by a constant expression (generally
treated as constexpr even if only marked as const), or (2) constexpr objects of literal type;
see Literal types defined on page 278 and Section 2.1.“constexpr Variables” on page 302. In
either case, any constexpr global object used within a constexpr function must be initialized
with a constant expression prior to the definition of the function. C++1415 relaxes some of
these restrictions; see Section 2.2.“constexpr Functions ’14” on page 959.

Use Cases

A better alternative to function-like macros

Computations that are useful both at run time and at compile time and/or that must be
inlined for performance reasons were typically implemented using preprocessor macros. For
instance, consider the task of converting mebibytes to bytes:
#define MEBIBYTES_TO_BYTES(mebibytes) ((mebibytes) * 1024 * 1024)

The macro above can be used in contexts where both a constant expression is required
and the input is known only during program execution:
#include <cstddef> // std::size_t
#include <vector> // std::vector
void example0(std::size_t input)
{

unsigned char fixedBuffer[MEBIBYTES_TO_BYTES(2)]; // compiletime constant

std::vector<unsigned char> dynamicBuffer;
dynamicBuffer.resize(MEBIBYTES_TO_BYTES(input)); // usable at run time

}

While a single-line macro with a reasonably unique (and long) name like MEBIBYTES_TO_BYTES
is unlikely to cause any problems in practice, it harbors all the disadvantages macros have
compared to regular functions. Macro names are not scoped; hence, they are subject to global
name collisions. There is no well-defined input and output type and thus no type safety. Per-
haps most tellingly, the lack of expression safety makes writing even simple macros tricky; a
common error, for example, is to forget the () around mebibytes in the implementation of
MEBIBYTES_TO_BYTES, resulting in an unintended result if applied to a non-trivial expression
such as MEBIBYTES_TO_BYTES(2+2) — yielding a value of (2+2 * 1024 * 1024) = 2097154
without the () and the intended value of ((2+2) * 1024 * 1024) = 4194304 with them.

15C++17 and C++20 each further relax these restrictions.

286

lorihughes
Cross-Out

lorihughes
Inserted Text
The value of a variable 

lorihughes
Cross-Out

lorihughes
Inserted Text
it is

lorihughes
Inserted Text
a 

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Inserted Text
is

lorihughes
Inserted Text
a nonvolatile

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Inserted Text
in contexts where 




