
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 29 — #55

i
i

i
i

i
i

Section 1.1 C++11 decltype

For example, consider the task of writing a generic sortRange function template that, given
a range, either invokes the sort member function of the argument (the one specifically
optimized for that type) if available or falls back to the more general std::sort:
template <typename Range>
void sortRange(Range& range)
{

sortRangeImpl(range, 0);
}

The client-facing sortRange function in the example above delegates its behavior to an
overloaded sortRangeImpl function in the example below, invoking the latter with the
range and a disambiguator of type int. The type of this additional parameter, whose
value is arbitrary, is used to give priority to the sort member function at compile time by
exploiting overload resolution rules in the presence of an implicit, standard conversion
from int to long:
template <typename Range>
void sortRangeImpl(Range& range, long) // low priority: standard conversion
{

// fallback implementation
std::sort(std::begin(range), std::end(range));

}

The fallback overload of sortRangeImpl in the code snippet above will accept a long disam-
biguator, requiring a standard conversion from int, and will simply invoke std::sort.
The more specialized overload of sortRangeImpl in the code snippet below will accept an
int disambiguator requiring no conversions and thus will be a better match, provided a
range-specific sort is available:
template <typename Range>
void sortRangeImpl(Range& range,

int, // high priority: exact match
decltype(range.sort())* = 0) // check expression validity

{
// optimized implementation
range.sort();

}

Note that, by exposing decltype(range.sort()) as part of sortRangeImpl’s declaration,
the more specialized overload will be discarded during template substitution if range.sort()
is not a valid expression for the deduced Range type.3

3The technique of exposing a possibly unused unevaluated expression — e.g., using decltype — in a
function’s declaration for the purpose of expression-validity detection prior to template instantiation is com-
monly known as expression SFINAE, which is a restricted form of the more general, classical SFINAE, and
acts exclusively on expressions visible in a function’s signature rather than on frequently obscure template-
based type computations.

29

lorihughes
Cross-Out

lorihughes
Inserted Text
template 

lorihughes
Inserted Text
generic

lorihughes
Cross-Out

lorihughes
Highlight
[code font]

lorihughes
Inserted Text
member function

[gloss]




