
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 298 — #324

i
i

i
i

i
i

constexpr Functions Chapter 2 Conditionally Safe Features

boost. The often-overlooked downside, however, is that this choice, once made, is not easily
reversed. After a library is released and a constexpr function is evaluated as part of a
constant expression, no clean way of turning back is available because clients now depend
on this compile-time property.

Overzealous use

Overzealous application of constexpr can also have a significant impact on compilation
time. Compile-time calculations can easily add seconds — or in extreme cases much more
— to the compilation time of any translation unit that needs to evaluate them. When
placed in a header file, these calculations need to be performed for all translation units that
include that header file, vastly increasing total compilation time and hindering developer
productivity.
Similarly, making public APIs that are constexpr usable without making it clear that they
are suboptimal implementations can lead to both (1) excessive runtime overhead compared
to a highly optimized nonconstexpr implementation (e.g., for isPrime in Difficulty imple-
menting constexpr functions on page 296) that might already exist in an organization’s
libraries and (2) increased compile time wherever algorithmically complex constexpr func-
tions are invoked.
Compilation limits on compile-time evaluation are typically per constant expression and
can easily be compounded unreasonably within just a single translation unit through the
evaluation of numerous constant expressions. For example, when using the generateArray
function in Use Cases — Precomputing tables of data at compile time on page 291, compile-
time limits apply to each individual array element’s computation, allowing total compilation
to grow linearly with the number of values requested.

One time is cheaper than compile time or run time

Overall, the ability to use a constexpr function to do calculations before run time fills in a
spectrum of possibilities for who pays for certain calculations and when they pay for them,
both in terms of computing time and maintenance costs.
Consider a possible set of five evolutionary steps for a computationally expensive function
that produces output values for a moderate number of unique input values. Examples include
returning the timestamp for the start of a calendar year or returning the nth prime number
up to some maximum n.

1. An initial version directly computes the output value each time it is needed. While
correct and written entirely in maintainable C++, this version has the highest runtime
overhead. Heavy use will quickly lead the developer to explore optimizations.

2. Where precomputing values might seem beneficial, a subsequent version initializes an
array once at run time to avoid the extra computations. Aggregate runtime perfor-
mance can be greatly improved but at the cost of slightly more code as well as a

298

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Inserted Text
Although generally an improvement over an equivalent template metaprogram, an o...

[overzealous]

lorihughes
Cross-Out

lorihughes
Inserted Text
still




