
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 299 — #325

i
i

i
i

i
i

Section 2.1 C++11 constexpr Functions

possibly noteworthy amount of runtime startup overhead. This hit at startup or on
first use of the library can quickly become the next performance bottleneck that needs
tackling. Initialization at startup can become increasingly problematic when linking
large applications with a multitude of libraries, each of which might have moderate
initialization times.

3. At this point constexpr comes into play as a tool to develop an option that avoids as
much runtime overhead as possible. An initial such implementation puts the initializa-
tion of a constexpr array of values into the corresponding inline implementation in
a library header. While this option minimizes the runtime overhead, the compile-time
overhead now becomes significantly larger for every translation unit that depends on
this library.

4. When faced with crippling compile times, the likely next step is to insulate the compile-
time-generated table in an implementation file and to provide runtime access to it
through accessor functions. While this refactoring removes the compilation overhead
from clients who consume a binary distribution of the library, anyone who needs to
build the library is still paying this cost each time they do a clean build. In modern
environments, with widely disparate operating systems and build toolchains, source
distributions have become much more common, and this overhead is imposed on a
wide range of clients for a popular library.

5. Finally, the data table generation is moved into a separate program, often written
in Python or some other non-C++ language. The output of this outboard program
is then embedded as raw data, e.g., a sequence of numbers initializing an array, in
a C++ implementation file. This solution eliminates the compile-time overhead for
the C++ program; the cost of computing the table is paid only once by the developer.
On the one hand, this solution adds to the maintenance costs for the initial developer,
since a separate toolchain is often needed. On the other hand, the code becomes
simpler, since the programmer is free to choose the best language for the job and is
free from the constraints of constexpr in C++.

Thus, as attractive as being able to precompute values directly in compile-time C++ might
seem, complex situations often dictate against that choice. Note that a programmer with
this knowledge might skip all of the intermediate steps and jump straight to the last one.
For example, a list of prime numbers is readily available on the Internet without needing
even to write a script; a programmer need only cut and paste it once, knowing that it will
never change.

Annoyances

Penalizing run time to enable compile time

When adopting constexpr functions, programmers commonly forget that these functions
are also called at run time, often more frequently than at compile time. Restrictions on the

299

lorihughes
Highlight
remove code font




