
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 302 — #328

i
i

i
i

i
i

constexpr Variables Chapter 2 Conditionally Safe Features

Compile-Time Accessible Variables

A variable or variable template of literal type can be declared to be constexpr, ensuring
it is initialized and can be used at compile time.

Description

Variables of all built-in types and certain user-defined types, collectively known as literal
types, can be declared constexpr, allowing them to be initialized at compile-time and sub-
sequently used in constant expressions:

int i0 = 5; // i0 is not a compile­time constant.
const int i1 = 5; // i1 is a compile­time constant.

constexpr int i2 = 5; // i2 " " " " "

double d0 = 5.0; // d0 is not a compile­time constant.
const double d1 = 5.0; // d1 " " " " " "

constexpr double d2 = 5.0; // d2 is a compile­time constant.

const char* s1 = "help"; // s1 is not a compile­time constant.
constexpr const char* s2 = "help"; // s2 is a compile­time constant.

Although const variables of integral types having preceding initialization with a constant
expression can be used within constant expressions (e.g., as the first argument to
static_assert, as the size of an array, or as a non-type template parameter), such is
not the case for any other type:
static_assert(i0 == 5, ""); // Error, i0 is not a compile­time constant.
static_assert(i1 == 5, ""); // OK, const is "magical" for integers (only).
static_assert(i2 == 5, ""); // OK

static_assert(d1 == 5, ""); // Error, d1 is not a compile­time constant.
static_assert(d2 == 5, ""); // OK

static_assert(s1[1] == 'e', ""); // Error, s1 is not a compile­time constant.
static_assert(s2[1] == 'e', ""); // OK

int a1[s1[1]]; // Error, s1 is not a compile­time constant.
int a2[s2[1]]; // OK, a C­style array of 101 (e) integers.

std::array<int, s1[1]> sa1; // Error, s1 is not a compile­time constant.
std::array<int, s2[1]> sa2; // OK, an std::array of 101 (e) integers.

Prior to C++11, the types of variables usable in a constant expression were quite limited:

302

lorihughes
Cross-Out

lorihughes
Inserted Text
is a compile-time constant.

lorihughes
Cross-Out

lorihughes
Inserted Text
is not a compile-time constant.

lorihughes
Cross-Out

lorihughes
Inserted Text
and enumerations

lorihughes
Inserted Text
const 

lorihughes
Line
Add a line:
const char* s0 = "help"; // s0 is not a compile-time constant.

lorihughes
Inserted Text
or enumeration




