
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 303 — #329

i
i

i
i

i
i

Section 2.1 C++11 constexpr Variables

const int b; // Error, const scalar variable must be initialized.
extern const int c; // OK, declaration
const int d = c; // OK, not constant initialized (c initializer not seen)

int ca1[c]; // Error, initializer of c is not visible.
int da1[d]; // Error, initializer of d is not a compile­time constant.

const int c = 7;
int ca2[c]; // OK, initializer is visible
int da2[d]; // Error, initializer of d is not a compile­time constant.

const int e = 17; // OK
int ea[e]; // OK

For an integral constant to be usable at compile time (i.e., as part of constant expression),
three requirements must be satisfied.

1. The variable must be marked const.

2. The initializer for a variable must have been seen by the time it is used, and it must
be a constant expression; this information is needed for a compiler to be able to make
use of the variable in other constant expressions.

3. The variable must be of integral type, e.g., bool, char, short, int, long, long long,
as well as the unsigned variations on these and any additional char types; see also
Section 1.1.“long long” on page 89.

This restriction to integral types provides support for those values where compile-time con-
stants are most frequently needed while limiting the complexity of what compilers were
required to support at compile time.
Use of constexpr when declaring a variable or variable template (see Section 1.2.“Variable
Templates” on page 157) enables a much richer category of types to participate in constant
expressions. This generalization, however, was not made for mere const variables because
they are not required to be initialized by compile-time constants:
int f() { return 0; } // f() is not a compile­time constant expression.

int x0 = f(); // OK
const int x1 = f(); // OK, but x1 is not a compile­time constant.

constexpr int x2 = f(); // Error, f() is not a constant expression.
constexpr const int x3 = f(); // Error, f() " " " " "

As the example code above demonstrates, variables marked constexpr must satisfy the
same requirements needed for integral constants to be usable in constant expressions. Unlike
other integral constants, their initializers must be constant expressions, or else the program
is ill formed.

303

lorihughes
Inserted Text
or enumeration

lorihughes
Inserted Text
and enumeration

lorihughes
Inserted Text
integer and enumeration




