
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 306 — #332

i
i

i
i

i
i

constexpr Variables Chapter 2 Conditionally Safe Features

constexpr struct D { int i; } x{1}; // brace­initialized aggregate x
constexpr int k = x.i; // Subobjects of constexpr objects are constexpr.

Initializer undefined behavior

It is important to note the significance of one of the differences between a constexpr integral
variable and a const integral variable. Because the initializer of a constexpr variable is
required to be a constant expression, it is not subject to the possibility of undefined behavior,
e.g., integer overflow or out-of-bounds array access, at run time and will instead result in a
compile-time error:

const int iA = 1 << 15; // 2^15 = 32,768 fits in 2 bytes.
const int jA = iA * iA; // OK

const int iB = 1 << 16; // 2^16 = 65,536 doesn't fit in 2 bytes.
const int jB = iB * iB; // Bug, overflow (might warn)

constexpr const int iC = 1 << 16;
constexpr const int jC = iC * iC; // Error, overflow in constant expression

constexpr int iD = 1 << 16; // Example D is the same as C, above.
constexpr int jD = iD * iD; // Error, overflow in constant expression

The code example above shows that an integer constant-expression overflow, absent
constexpr, is not required by the C++ Standard to be treated as ill formed. When signed
integer overflow happens in an initializer of a constexpr variable, however, the compiler is
required to report it as an error (not just a warning).
A strong association exists between constexpr variables and functions; see Section 2.1.
“constexpr Functions” on page 257. Using a constexpr variable rather than just a const
one forces the compiler to detect overflow — and more generally, any undefined behavior —
within the body of a constexpr function and report that overflow as an error in a way that
the compiler would not otherwise be required to do.
For example, suppose we have two similar functions, squareA and squareB, defined for the
built-in type int that each return the integral product of multiplying the single argument
with itself:

int squareA(int i) { return i * i; } // nonconstexpr function
constexpr int squareB(int i) { return i * i; } // constexpr function

Declaring a variable to be just const — and not constexpr — does nothing to force the
compiler to check the evaluation of either function for overflow:

int xA0 = squareA(1 << 15); // OK
const int xA1 = squareA(1 << 15); // OK

constexpr int xA2 = squareA(1 << 15); // Error, squareA, not constexpr

306

lorihughes
Cross-Out

lorihughes
Inserted Text
is small enough.

lorihughes
Inserted Text
iA^2 fits.

lorihughes
Cross-Out

lorihughes
Inserted Text
 is too large.

lorihughes
Inserted Text
iB^2

lorihughes
Inserted Text
s

lorihughes
Inserted Text
.

lorihughes
Inserted Text
or enumeration

lorihughes
Inserted Text
or enumeration




