
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 309 — #335

i
i

i
i

i
i

Section 2.1 C++11 constexpr Variables

k_SECONDS_PER_MINUTE = 60, // UT might be long or long long.
k_MINUTES_PER_HOUR = 60,
k_SECONDS_PER_HOUR = 60*60,
// ...
k_USEC_PER_WEEK = 1000L*1000*60*60*24*7 // same UT as all of the above

};
};

The original values will remain unchanged after the enumeration is extended, but the burden
of all of the compiler warnings resulting from the change in UT and rippling throughout a
large codebase could be expensive to repair.
We would like the original values to remain unchanged (e.g., remain as int if that’s what
they were), and we want only those values that do not fit in an int to morph into a larger
integral type. We might achieve this effect by placing each enumerator in its own separate
anonymous enumeration:
struct TimeRatios3 // explicit scope for multiple classic anonymous enum types
{

enum { k_SECONDS_PER_MINUTE = 60 }; // UT: int (likely)
enum { k_MINUTES_PER_HOUR = 60 }; // " " "
enum { k_SECONDS_PER_HOUR = 60*60 }; // " " "
// ...
enum { k_USEC_PER_SEC = 1000*1000 }; // UT: int (likely)
enum { k_USEC_PER_MIN = 1000*1000*60 }; // " " "
enum { k_USEC_PER_HOUR = 1000U*1000*60*60 }; // UT: unsigned int
enum { k_USEC_PER_DAY = 1000L*1000*60*60*24 }; // UT: long or long long
enum { k_USEC_PER_WEEK = 1000L*1000*60*60*24*7 }; // UT: long or long long

};

In this case, the original values as well as their respective UTs will remain unchanged, and
each new enumerated value will independently take on its own independent UT, which is
either implementation defined or else dictated by the number of bits required to represent
the value.
A modern alternative to having separate anonymous enums for each distinct value (or class
of values) is to instead encode each ratio as an explicitly typed constexpr variable:
struct TimeRatios4
{

static constexpr int k_SECONDS_PER_MINUTE = 60;
static constexpr int k_MINUTES_PER_HOUR = 60;
static constexpr int k_SECONDS_PER_HOUR = k_MINUTES_PER_HOUR *

k_SECONDS_PER_MINUTE;
// ...
static constexpr long long k_NANOS_PER_SECOND = 1000*1000*1000;
static constexpr long long k_NANOS_PER_HOUR = k_NANOS_PER_SECOND *

k_SECONDS_PER_HOUR;
};

309

lorihughes
Cross-Out

lorihughes
Inserted Text
restricted




