
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 31 — #57

i
i

i
i

i
i

Section 1.1 C++11 decltype

Annoyances

Mechanical repetition of expressions might be required

As mentioned in Use Cases — Creating an auxiliary variable of generic type on page 28,
using decltype to capture a value of an expression that is about to be used or for the return
value of an expression can often lead to repeating the same expression in multiple places,
three distinct ones in the earlier example.
An alternate solution to this problem is to capture the result of the decltype expression in
a typedef, using type alias, or as a defaulted template parameter, but such an approach
runs into the problem that it can be used only after the expression is valid. A defaulted
template parameter cannot reference parameter names because it is written before them,
and a type alias cannot be introduced prior to the return type being needed. A solution to
this problem lies in using Standard Library function std::declval to create expressions of
the appropriate type without needing to reference the actual function parameters by name:

template <typename A, typename B,
typename Result = decltype(std::declval<const A&>() +

std::declval<const B&>())>
Result loggedSum(const A& a, const B& b)
{

Result result = a + b; // no duplication of the decltype expression
LOG_TRACE << a << " + " << b << "=" << result;
return result;

}

Here, std::declval, a function that cannot be executed at run time and is only appropriate
for use in unevaluated contexts, produces an expression of the specified type. When mixed
with decltype, std::declval lets us determine the result types for expressions without
needing to or even being able to construct objects of the needed types.

See Also

• “using Aliases” (§1.1, p. 133) explains that often it is useful to give a name to the
type yielded by decltype, which is done with a using alias.

• “auto Variables” (§2.1, p. 195) illustrates how auto variables have a similar but distinct
type deduction to that computed by decltype.

• “Rvalue References” (§2.1, p. 710) describes value categories that can be obtained for
arbitrary expressions using decltype.

31

lorihughes
Cross-Out

lorihughes
Inserted Text
the type

lorihughes
Cross-Out

lorihughes
Inserted Text
returned

lorihughes
Inserted Text
resulting in 

lorihughes
Cross-Out

lorihughes
Inserted Text
instances




