
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 313 — #339

i
i

i
i

i
i

Section 2.1 C++11 constexpr Variables

As an academically interesting example of this practical security problem, suppose we want
to write a compile-time function in C++ to compute the Collatz length of an arbitrary
positive integer and generate a compilation error if any intermediate calculation would result
in signed integer overflow.
First let’s take a step back to understand what we mean by Collatz length. Suppose we have
a function, cf, that takes a positive int, n, and for even n returns n/2 and for odd n returns
3n+1:
int cf(int n) { return n % 2 ? 3 * n + 1 : n / 2; } // Collatz function

Given a positive integer, n, the Collatz sequence, cs(n), is defined as the sequence of
integers generated by repeated application of the Collatz function — e.g.,
cs(1) = { 4, 2, 1, 4, 2, 1, 4, ... };, cs(3) = { 10, 5, 16, 8, 4, 2, 1, 4, ... },
and so on. A classic but as yet unproven conjecture in mathematics states that, for every
positive integer, n, the Collatz sequence for n will eventually reach 1. The Collatz length of
the positive integer n is the number of iterations of the Collatz function needed to reach 1,
starting from n. Note that the Collatz length for n = 1 is 0.
This example showcases the need for a constexpr variable in that its initializer is required
to be a constant expression, ensuring that the evaluation of a constexpr function occurs at
compile time. Again, to avoid distractions related to implementing more complex function-
ality within the limitations of C++11 constexpr functions, we will make use of the relaxed
restrictions of C++14; see Section 2.1.“constexpr Functions” on page 257:
constexpr int collatzLength(long long number)

// Return the length of the Collatz sequence of the specified number. The
// behavior is undefined unless each intermediate sequence member can be
// expressed as a long long and number > 0.

{
int length = 0; // collatzLength(1) is 0.

while (number > 1) // The current value of number is not 1.
{

++length; // Keep track of the length of the sequence so far.

if (number % 2) // if the current number is odd
{

number = 3 * number + 1; // advance from odd sequence value
}
else
{

number /= 2; // advance from even sequence value
}

}

return length;
}

313

lorihughes
Cross-Out




