“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 316 — #342

constexpr Variables Chapter 2 Conditionally Safe Features

No static constexpr data members defined in their own class

When implementing a class using the singleton pattern, it might be desirable to have the
single object of that type be a constexpr private static member of the class itself, with
guaranteed compile-time, data-race-free initialization and no direct accessibility outside
the class. This approach does not work as easily as planned because constexpr static data
members must have a complete type, and the class being defined is not complete until its
closing brace:

class S

{

private:
static const S constval; // OK, initialized outside class below
static constexpr S constexprvVal; // Error, constexpr must be initialized.
static constexpr S constInit{}; // Error, S is not complete.

}
const S S::constval{}; // 0K, initialize static const member.

The “obvious” workaround of applying a more traditional singleton pattern, where the
singleton object is a static local variable at function scope, also fails (see Section 1.1.
“Function static ’11” on page 68) because constexpr functions are not allowed to have
static variables (see Section 2.1.“constexpr Functions” on page 257):

constexpr const S& singleton()

{

static constexpr S object{}; // Error, even in C++14, static is not allowed.
return object;

}

The only solution available for constexpr objects of static storage duration is to put
them outside of their type, either at global scope, at namespace scope, or nested within a
befriended helper class®:

class S
{
friend struct T;
S() = default; // private

//
}
struct T
{
static constexpr S constInit{};
}

8C+420 provides an alternate partial solution with the constinit keyword, allowing for compile-time
initialization of static data members, but that still does not make such objects usable in a constant expression.

316


lorihughes
Highlight
remove code font




