
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 319 — #345

i
i

i
i

i
i

Section 2.1 C++11 Default Member Init

For any member m that has a default member initializer, constructors that don’t initialize
m in their member initializer list will implicitly initialize m by using the default member
initializer value:
struct S2
{

int d_i = 1;
int d_j = 1;

S2() { } // Initialize d_i with 1, d_j with 1.
S2(int) : d_i(2) { } // Initialize d_i with 2, d_j with 1.
S2(int, int) : d_i(2), d_j(3) { } // Initialize d_i with 2, d_j with 3.

};

Note that initialization of all data members including those using the default member ini-
tializers happen in the order in which they are declared in the class definition. Accord-
ingly, previously initialized nonstatic data members can be used in subsequent initializer
expressions:
struct S4 {

const char* d_s{"hello"};
int d_i{2};
char d_c{d_s[1]}; // OK, d_c initialized to d_s's second character

S4() { }
S4(const char* s) : d_s(s) { }

};

S4 s4d; // OK, s4d.d_c initialized to 'e'
S4 s4v("goodbye"); // OK, s4v.d_c initialized to 'o'

The default member initializer, just like member function bodies and member initializa-
tion lists, executes in a complete-class context. Since the initializer sees its enclosing class
as a complete type, it can therefore reference the size of the enclosing type and invoke
member functions that have not yet been seen:
struct S5
{

int d_a[4];
int d_i = sizeof(S5) + seenBelow(); // OK
int seenBelow();

};

Name lookup in default member initializers will find members of the enclosing class and its
bases before looking in namespace scope:

319

lorihughes
Highlight
change to \emcppsgloss[nonstatic data member]{non\lstinline!static! data members}




