
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 320 — #346

i
i

i
i

i
i

Default Member Init Chapter 2 Conditionally Safe Features

char i = 4;

struct S6
{

int j = sizeof(i); // refers to S6::i, not ::i
int i = 5;

};

S6 s6; // OK, s6.j initialized to 4.

The this pointer can also be safely used as part of a default member initializer. As with any
other uses of this inside a constructor, care must be exercised because the object referred
to by this will be in a partially constructed state:
int getSomeRuntimeValue();

struct S7
{

S7* d_selfPtr = this; // OK
int d_bad = this­>d_later; // Bug, d_later not yet initialized
int d_later = getInitialDLaterValue(); // OK
static int getInitialDLaterValue();

};

Unlike variables at function or global scope and unlike static data members, a default mem-
ber initializer for a member that is an array of unknown bound will not determine the array
bound:
struct S8
{

static int d_s[]; // OK, d_s has unknown bounds.
int d_a[] = {1, 2, 3}; // Error, d_a is an array of unknown bound.
int d_b[3] = {1, 2, 3}; // OK, bound explicitly specified

};

int a[] = {1, 2, 3}; // OK, the length of a is deduced to 3.
int S8::d_s[] = {4, 5, 6}; // OK, the length of S8::d_s is deduced to 3.

Interactions with unions

Default member initializers can also be used with union members. However, only one variant
member of a union can have a default member initializer, since that will determine the default
initialization of the entire union:
union U0
{

char d_c = 'a';

320

lorihughes
Cross-Out
[remove this line and the blank line after it]

lorihughes
Cross-Out

lorihughes
Inserted Text
namespace

lorihughes
Inserted Text
; the default member initializer is not necessarily the initializer of that member, and its type is unknown until the class is complete:




