“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 33 — #59

Section 1.1 C++11 Defaulted Functions

Using =default for Special Member Functions

default

. . . :
atieatty;

Description

An important aspect of C++ class design is the understanding that the compiler will attempt
to generate certain member functions to create, copy, destroy, and now move (see Section 2.1.
“Rvalue References” on page 710) an object unless developers implement some or all of these
functions themselves. Determining which of the special member functions will continue to be
generated and which will be suppressed in the presence of user-provided special member
functions requires remembering the numerous rules the-eompiter—tses,

Declaring a special member function explicitly

The rules specifying what happens in the presence of one or more user-provided special mem-
ber functions are inherently complex and not necessarily intuitive; in fact, some have been
deprecated. Specifically, even in the presence of a user-provided destructor, both the copy
constructor and the copy-assignment operator have historically been generated implicitly.
Relying on such generated behavior is problematic because it is unlikely that a class requir-
ing a user-provided destructor will function correctly without corresponding user-provided
copy operations. As of C++11, reliance on such dubious implicitly generated behavior is
deprecated.

Let’s briefly illustrate a few common cases and then take a look at Howard Hinnant’s now
famous table (see page 44 of Appendiz — Implicit Generation of Special Member Functions)
to demystify what’s going on under the hood.

Example 1: Providing just the default constructor Consider a struct with a user-
provided default constructor:

struct S1
{

S1(); // user-provided default constructor

3

A user-provided default constructor has no effect on other special member functions. Pro-
viding any other constructor, however, will suppress automatic generation of the default
constructor. We can, however, use = default to restore the constructor as a trivial opera-
tion; see Use Cases — Restoring the generation of a special member function suppressed by
another on page 36. Note that g mendeclared function is nonexistent, which means that it will
not participate in overload resolution at all. In contrast, g deleted function participates

FOR REVISION PURPOSES ONLY ”
DO NOT SHARE


lorihughes
Cross-Out

lorihughes
Inserted Text
Annotating a special member function with `=`\;`default` denotes a definition for that function; the compiler will then automatically generate its canonical implementation or, if that definition was not well formed, mark the function as deleted.

lorihughes
Cross-Out

lorihughes
Inserted Text
un

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Inserted Text
n

lorihughes
Cross-Out

lorihughes
Inserted Text
in the Standard

lorihughes
Cross-Out

lorihughes
Inserted Text
an explicitly




