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Default Member Init Chapter 2 Conditionally Safe Features

#include <type_traits> // std::is_trivial

struct S0 { int d_i; };
struct S1 { int d_i = 0; };
struct S2 { int d_i; S2() : d_i(0) { } };

static_assert(std::is_trivial<S0>::value, "");
static_assert(!std::is_trivial<S1>::value, "");
static_assert(!std::is_trivial<S2>::value, "");

Loss of aggregate status

In C++11, classes using default member initializers are not considered aggregates, and
therefore aggregate initialization can’t be used. Fortunately, this restriction has been
lifted in C++14; see Section 1.2.“Aggregate Init ’14” on page 138:
struct ThreadPoolConfiguration
{

int d_numThreads = 8; // number of worker threads
bool d_enableWorkStealing = true; // enable work stealing
int d_taskSize = 64; // buffer size for an enqueued task

};

void f()
{

ThreadPoolConfiguration tpc0; // OK in C++11
ThreadPoolConfiguration tpc1{16, true, 64}; // Error, in C++11; OK in C++14

}

Default member initializer does not deduce array size

Default member initializers do not allow deduction of the size of an array member:
struct S
{

char s[]{"Idle"}; // Error, must specify array size
};

The rationale is that there is no guarantee that the default member initializer will be used
to initialize the member; hence, it cannot be a definitive source of information about the
size of such a member in the object layout.
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 Furthermore, the initializer's type will not be known until the class is complete, whereas the member's type must be known at the point of declaration.
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