
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 330 — #356

i
i

i
i

i
i

Default Member Init Chapter 2 Conditionally Safe Features

#include <type_traits> // std::is_trivial

struct S0 { int d_i; };
struct S1 { int d_i = 0; };
struct S2 { int d_i; S2() : d_i(0) { } };

static_assert(std::is_trivial<S0>::value, "");
static_assert(!std::is_trivial<S1>::value, "");
static_assert(!std::is_trivial<S2>::value, "");

Loss of aggregate status

In C++11, classes using default member initializers are not considered aggregates, and
therefore aggregate initialization can’t be used. Fortunately, this restriction has been
lifted in C++14; see Section 1.2.“Aggregate Init ’14” on page 138:
struct ThreadPoolConfiguration
{

int d_numThreads = 8; // number of worker threads
bool d_enableWorkStealing = true; // enable work stealing
int d_taskSize = 64; // buffer size for an enqueued task

};

void f()
{

ThreadPoolConfiguration tpc0; // OK in C++11
ThreadPoolConfiguration tpc1{16, true, 64}; // Error, in C++11; OK in C++14

}

Default member initializer does not deduce array size

Default member initializers do not allow deduction of the size of an array member:
struct S
{

char s[]{"Idle"}; // Error, must specify array size
};

The rationale is that there is no guarantee that the default member initializer will be used
to initialize the member; hence, it cannot be a definitive source of information about the
size of such a member in the object layout.

330

lorihughes
Inserted Text
d_

lorihughes
Inserted Text
 Furthermore, the initializer's type will not be known until the class is complete, whereas the member's type must be known at the point of declaration.

lorihughes
Sticky Note
Unmarked set by lorihughes




