
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 332 — #358

i
i

i
i

i
i

enum class Chapter 2 Conditionally Safe Features

Strongly Typed, Scoped Enumerations

An enum class is an alternative enumeration type that provides simultaneously (1) an
enclosing scope for its enumerators and (2) stronger typing compared to a classic enum.

Description

C++11 introduces a novel enumeration construct, enum class or, equivalently, enum struct:
enum class Ec { A, B, C }; // scoped enumeration, Ec, containing three enumerators

The enumerators of the enum class Ec in the line above — namely, A, B, and C — do not
automatically become part of the enclosing scope and must be qualified to be referenced:
Ec e0 = A; // Error, A not found
Ec e1 = Ec::A; // OK

Moreover, attempting to use an expression of type enum class E as, say, an int or in an
arithmetic context will be flagged as an error, thus necessitating an explicit cast:
int i0 = Ec::B; // Error, conversion to int not supported
int i1 = static_cast<int>(Ec::B); // OK, i1 is 1.
int i2 = 1 + Ec::B; // Error, conversion to int not supported
int i3 = ­Ec::B; // Error, unsupported arithmetic operations

bool b0 = Ec::B != 2; // Error, comparison with int unsupported
bool b1 = Ec::B != Ec::C; // OK, b1 is 'true'.

The enum class complements but does not replace the classical, C-style enum:
enum E { e_Enumerator0 /*= value0 */, /*...*/ e_EnumeratorN /* = valueN */ };

// Classic, C­style enum: enumerators are neither type safe nor scoped.

For examples where the classic enum shines, see Potential Pitfalls — Strong typing of an
enum class can be counterproductive on page 344 and Annoyances — Scoped enumerations
do not necessarily add value on page 351.
Still, innumerable practical situations occur in which enumerators that are both scoped
and more type safe would be preferred; see Introducing the C++11 scoped enumerations on
page 335 and Use Cases on page 337.

Drawbacks and workarounds relating to unscoped C++03 enumerations

Since the enumerators of a classic enum leak out into the enclosing scope, if two unrelated
enumerations that happen to use the same enumerator name appear in the same scope, an
ambiguity could ensue:

332

lorihughes
Cross-Out

lorihughes
Inserted Text
name collision 




