
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 334 — #360

i
i

i
i

i
i

enum class Chapter 2 Conditionally Safe Features

that enumerated type as well as the values of its enumerators. Although implicit conversion
to an enumerated type is never permitted, when implicitly converting from a classic enum
type to some arithmetic type, the enum promotes to integral types in a way similar to how
its underlying type would promote using the rules of integral promotion and standard
conversion:
void f()
{

enum A { e_A0, e_A1, e_A2 }; // classic, Cstyle C++03 enum
enum B { e_B0, e_B1, e_B2 }; // " " " "

A a; // Declare object a to be of type A.
B b; // " " b " " " " B.

a = e_B2; // Error, cannot convert e_B2 to enum type A
b = e_B2; // OK, assign the value e_B2 (numerically 2) to b.
a = b; // Error, cannot convert enum type B to enum type A
b = b; // OK, selfassignment
a = 1; // Error, invalid conversion from int 1 to enum type A
a = 0; // Error, invalid conversion from int 0 to enum type A

bool v = a; // OK
char w = e_A0; // OK
int i = e_B0; // OK
unsigned y = e_B1; // OK
float x = b; // OK
double z = e_A2; // OK
char* p = e_B0; // Error, unable to convert e_B0 to char*
char* q = +e_B0; // Error, invalid conversion of int to char*

}

Notice that, in this example, the final two diagnostics for the attempted initializations of p
and q, respectively, differ slightly. In the first, we are trying to initialize a pointer, p, with an
enumerated type, B. In the second, we have creatively used the built-in unary-plus operator
to explicitly promote the enumerator to an integral type before attempting to assign it to
a pointer, q. Even though the numerical value of the enumerator is 0 and such is known
at compile time, implicit conversion to a pointer type from anything but the literal integer
constant 0 is not permitted. Excluding esoteric user-defined types, only a literal 0 or, as
of C++11, a value of type std::nullptr_t is implicitly convertible to an arbitrary pointer
type; see Section 1.1.“nullptr” on page 99.
C++ fully supports comparing values of classic enum types with values of arbitrary arith-
metic type as well as those of the same enumerated type; the operands of a comparator
will be promoted to a sufficiently large integer type, and the comparison will be done with

334

lorihughes
Cross-Out

lorihughes
Inserted Text
integral




