
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 335 — #361

i
i

i
i

i
i

Section 2.1 C++11 enum class

those values. Comparing values having distinct enumerated types, however, is deprecated
and will typically elicit a warning.1

Introducing the C++11 scoped enumerations

With the advent of modern C++, we now have a new, alternative enumeration construct,
enum class, that simultaneously addresses strong type safety and lexical scoping, two dis-
tinct and often desirable properties:
enum class Name { e_Enumerator0 /* = value0 */, e_EnumeratorN /* = valueN */ };

// enum class enumerators are both type­safe and scoped

Another major distinction is that the default underlying type for a C-style enum is imple-
mentation defined, whereas, for an enum class, it is always an int. See enum class and
underlying type on page 337 and Potential Pitfalls — External use of opaque enumerators
on page 350.
Unlike unscoped enumerations, enum class does not leak its enumerators into the enclosing
scope and can therefore help avoid collisions with other enumerations having like-named
enumerators defined in the same scope:
enum VehicleUnscoped { e_CAR, e_TRAIN, e_PLANE };
struct VehicleScopedExplicitly { enum Enum { e_CAR, e_TRAIN, e_PLANE }; };
enum class VehicleScopedImplicitly { e_CAR, e_BOAT, e_PLANE };

Just like an unscoped enum type, an object of a scoped enumeration type is passed as a
parameter to a function using the enumeration name itself:
void f1(VehicleUnscoped value); // unscoped enumeration passed by value
void f2(VehicleScopedImplicitly value); // scoped enumeration passed by value

If we use the approach for adding scope to enumerators that is described in Drawbacks
relating to weakly typed, C++03 enumerators on page 333, the name of the enclosing struct

1As of C++20, attempting to compare two values of distinct classically enumerated types is a compile-
time error. Note that explicitly converting at least one of them to an integral type — for example, using
built-in unary plus — both makes our intentions clear and avoids warnings.
void test()
{
if (e_A0 < 0) { /*...*/ } // OK, comparison with integral type
if (1.0 != e_B1) { /*...*/ } // OK, comparison with arithmetic type
if (A() <= e_A2) { /*...*/ } // OK, comparison with same enumerated type
if (e_A0 == e_B0) { /*...*/ } // warning, deprecated (error as of C++20)
if (e_A0 == +e_B0) { /*...*/ } // OK, unary + converts to integral type
if (+e_A0 == e_B0) { /*...*/ } // OK, " " " " "
if (+e_A0 == +e_B0) { /*...*/ } // OK, " " " " "

}

335

lorihughes
Inserted Text
unless explicitly specified (see underlying type [feature xref])

lorihughes
Cross-Out

lorihughes
Inserted Text
or other names

lorihughes
Cross-Out

lorihughes
Inserted Text
deprecated as of C++17;

lorihughes
Cross-Out

lorihughes
Inserted Text
Comparing enumerators of distinct enumerated types is deprecated and will typically elicit a warning. Furthermore, if the underlying types of the enumerations whose enumerators are being compared have different signedness, the common dangers of comparing `signed` and `unsigned` integral types also apply

lorihughes
Cross-Out

lorihughes
Inserted Text
enumerations

