
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 337 — #363

i
i

i
i

i
i

Section 2.1 C++11 enum class

enum class and underlying type

Since C++11, both scoped and unscoped enumerations permit explicit specification of their
integral underlying type (see Section 2.1.“Underlying Type ’11” on page 829):

enum Ec : char { e_X, e_Y, e_Z };
// Underlying type is char.

static_assert(1 == sizeof(Ec), "");
static_assert(1 == sizeof Ec::e_X, "");

enum class Es : short { e_X, e_Y, e_Z };
// Underlying type is short int.

static_assert(sizeof(short) == sizeof(Es), "");
static_assert(sizeof(short) == sizeof Es::e_X, "");

Unlike a classic enum, which has an implementation-defined default underlying type, the
default underlying type for an enum class is always int:

enum class Ei { e_X, e_Y, e_Z };
// When not specified, the underlying type of an enum class is int.

static_assert(sizeof(int) == sizeof(Ei), "");
static_assert(sizeof(int) == sizeof Ei::e_X, "");

Note that, because the default underlying type of an enum class is specified by the Standard,
eliding the enumerators of an enum class in a local redeclaration is always possible; see
Potential Pitfalls — External use of opaque enumerators on page 350 and Section 2.1.
“Opaque enums” on page 660.

Use Cases

Avoiding unintended implicit conversions to arithmetic types

Suppose that we want to represent the result of selecting one of a fixed number of alternatives
from a drop-down menu as a simple unordered set of uniquely valued named integers. For
example, this might be the case when configuring a product, such as a vehicle, for purchase:

struct Transmission
{

enum Enum { e_MANUAL, e_AUTOMATIC }; // classic, C++03 scoped enum
};

Although automatic promotion of a classic enumerator to int works well when typical use
of the enumerator involves knowing its cardinal value, such promotions are less than ideal
when cardinal values have no role in intended usage:

337

lorihughes
Cross-Out

lorihughes
Inserted Text
enumerations




