“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 338 — #3064

enum class Chapter 2 Conditionally Safe Features

class Car { /*...*/ };

struct Transmission

{ // explicitly scoped
enum Enum { e_MANUAL, e_AUTOMATIC }; // classic enum
iy // (BAD IDEA)

int buildCar(Car* result, int numDoors, Transmission::Enum transmission)

{

int status = Transmission::e_MANUAL; // Bug, accidental misuse

for (int i = 0; i < transmission; ++i) // Bug, accidental misuse

{

attachDoor(1i);

return status;

}

As shown in the example above, it is never correct for a value of type Transmission: :Enum
to be assigned to, compared with, or otherwise modified like an integer; hence, any such use
would necessarily be considered a mistake and, ideally, flagged by the compiler as an error.
The stronger typing provided by enum class achieves this goal:

class Car { /*...*/ };
enum class Transmission { e_MANUAL, e_AUTOMATIC }; // modern enum class (GOOD IDEA)

int buildCar(Car* result, int numDoors, Transmission transmission)

{

int status = Transmission::e_MANUAL; // Error, incompatible types

for (int i = 0; i < transmission; ++i) // Error, incompatible types

{

attachDoor(1i);

return status;

}

By deliberately choosing the enum class in the examle above over the classic enum, we
automate the detection of many common kinds of accidental misuse. Secondarily, we slightly
simplify the interface of the function signature by removing the extra ::Enum boilerplate
qualifications required of an explicitly scoped, less-type-safe, classic enum, but see Potential
Pitfalls — Strong typing of an enum class can be counterproductive on page 344.

In the event that the numeric value of a strongly typed enumerator is needed (e.g., for
serialization), it can be extracted explicitly via a static_cast:

338


lorihughes
Inserted Text
p

[example]




