
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 350 — #376

i
i

i
i

i
i

enum class Chapter 2 Conditionally Safe Features

If, however, the cardinal value of the MonthOfYear enumerators is likely to be relevant to
clients, an explicitly scoped classic enum might be considered as a viable alternative:
struct MonthOfYear // explicit scoping for enum
{

enum Enum
{

e_JAN, e_FEB, e_MAR, // winter
e_APR, e_MAY, e_JUN, // spring
e_JUL, e_AUG, e_SEP, // summer
e_OCT, e_NOV, e_DEC // autumn

};
};

bool isSummer(MonthOfYear::Enum month) // must now pass nested Enum type
{

return MonthOfYear::e_JUL <= month && month <= MonthOfYear::e_SEP;
}

void doSomethingWithEachMonth()
{

for (int i = MonthOfYear::e_JAN; // iteration variable is now an int
i <= MonthOfYear::e_DEC;

++i) // OK, convert to underlying type
{

// ... (might require cast back to enumerated type)
}

}

Note that such code presumes that the enumerated values will (1) remain in the same order
and (2) have contiguous numerical values irrespective of the implementation choice.

External use of opaque enumerators

Since scoped enumerations have a UT of int by default, clients are always able to (re)declare
it, as a complete type, without its enumerators. Unless the opaque form of an enum class’s
definition is exported in a header file separate from the one implementing the publicly acces-
sible full definition, external clients wishing to exploit the opaque version will experience an
attractive nuisance in that they can provide it locally, along with its underlying type, if any.
If the underlying type of the full definition were to subsequently change, any program
incorporating the original elided definition locally and also the new, full one from the header
would become silently ill formed, no diagnostic required (IFNDR); see Section 2.1.
“Opaque enums” on page 660.

350

lorihughes
Cross-Out

lorihughes
Inserted Text
enumerations

lorihughes
Cross-Out




