
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 354 — #380

i
i

i
i

i
i

extern template Chapter 2 Conditionally Safe Features

#include <vector> // std::vector (general template)

template class std::vector<int>;
// Deposit all definitions for this specialization into the .o for this
// translation unit.

This explicit-instantiation directive compels the compiler to instantiate all functions defined
by the named std::vector class template having the specified int template argument; any
collateral object code resulting from these instantiations will be deposited in the resulting .o
file for the current translation unit. Importantly, even functions that are never used are still
instantiated, so this solution might not be the correct one for many classes; see Potential
Pitfalls — Accidentally making matters worse on page 373.

Explicit-instantiation declaration

C++11 introduced the explicit-instantiation declaration, a complement to the explicit-
instantiation definition. The newly provided syntax allows us to place extern template
in front of the declaration of an explicit specialization of a class template, a function tem-
plate, or a variable template:
#include <vector> // std::vector (general template)

extern template class std::vector<int>;
// Suppress depositing of any object code for std::vector<int> into the
// .o file for this translation unit.

Using the modern extern template syntax above instructs the compiler to refrain from
depositing any object code for the named specialization in the current translation unit and
instead to rely on some other translation unit to provide any missing object-level definitions
that might be needed at link time; see Annoyances — No good place to put definitions for
unrelated classes on page 373.
Note, however, that declaring an explicit instantiation to be an extern template in no
way affects the ability of the compiler to instantiate and to inline visible function-definition
bodies for that template specialization in the translation unit:
// client.cpp:
#include <vector> // std::vector (general template)

extern template class std::vector<int>;

void client(std::vector<int>& inOut) // fully specialized instance of a vector
{

if (inOut.size()) // This invocation of size can inline.
{

int value = inOut[0]; // This invocation of operator[] can be inlined.
}

}

354

lorihughes
Cross-Out




