
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 355 — #381

i
i

i
i

i
i

Section 2.1 C++11 extern template

In the previous example, the two tiny member functions of vector, namely, size and
operator[], will typically be inlined — in precisely the same way they would have been had
the extern template declaration been omitted. The only purpose of an extern template
declaration is to suppress object-code generation for this particular template instantiation
for the current translation unit.
Finally, note that the use of explicit-instantiation directives has absolutely no effect on the
logical meaning of a well-formed program; in particular, when applied to specializations of
function templates, they have no effect on overload resolution:
template <typename T> bool f(T v) {/*...*/} // general template definition

extern template bool f(char c); // specialization of f for char
extern template bool f(int v); // specialization of f for int

bool bc = f((char) 0); // exact match: Object code is suppressed locally.
bool bs = f((short) 0); // not exact match: Object code is generated locally.
bool bi = f((int) 0); // exact match: Object code is suppressed locally.
bool bu = f((unsigned)0); // not exact match: Object code is generated locally.

As the example above illustrates, overload resolution and template argument deduction
occur independently of any explicit-instantiation declarations. Only after the template to
be instantiated is determined does the extern template syntax take effect; see also Potential
Pitfalls — Corresponding explicit-instantiation declarations and definitions on page 371.

A more complete illustrative example

So far, we have seen the use of explicit-instantiation declarations and explicit-instantiation
definitions applied to only a standard class template, std::vector. The same syntax shown
in the previous code snippet applies also to full specializations of individual function tem-
plates and variable templates.
As a more comprehensive, albeit largely pedagogical, example, consider the overly simplis-
tic my::Vector class template along with other related templates defined within a header
file, my_vector.h:
// my_vector.h:
#ifndef INCLUDED_MY_VECTOR // internal include guard
#define INCLUDED_MY_VECTOR

#include <cstddef> // std::size_t
#include <utility> // std::swap

namespace my // namespace for all entities defined within this component
{

template <typename T>
class Vector

355

lorihughes
Cross-Out

lorihughes
Inserted Text
For all four calls of `f` above,




