
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 357 — #383

i
i

i
i

i
i

Section 2.1 C++11 extern template

2. A free-function template, swap, that operates on objects of corresponding specialized
Vector type

3. A const C++14 variable template, vectorSize, that represents the number of bytes
in the footprint of an object of the corresponding specialized Vector type

Any use of these templates by a client might and typically will trigger the depositing of
equivalent definitions as object code in the client translation unit’s resulting .o file, irre-
spective of whether the definition being used winds up getting inlined.
To eliminate object code for specializations of entities in the my_vector component, we must
first decide where the unique definitions will go; see Annoyances — No good place to put
definitions for unrelated classes on page 373. In this specific case, we own the component
that requires specialization, and the specialization is for a ubiquitous built-in type; hence,
the natural place to generate the specialized definitions is in a .cpp file corresponding to the
component’s header:
// my_vector.cpp:
#include <my_vector.h> // We always include the component's own header first.

// By including this header file, we have introduced the general template
// definitions for each of the explicit­instantiation declarations below.

namespace my // namespace for all entities defined within this component
{

template class Vector<int>;
// Generate object code for all nontemplate member functions and definitions
// of static data members of template my::Vector having int elements.

template std::size_t Vector<double>::length() const; // BAD IDEA
// In addition, we could generate object code for just a particular member
// function definition of my::Vector (e.g., length) for some other
// argument type (e.g., double).

template void swap(Vector<int>& lhs, Vector<int>& rhs);
// Generate object code for the full specialization of the swap free­
// function template that operates on objects of type my::Vector<int>.

template const std::size_t vectorSize<int>; // C++14 variable template
// Generate the object­code­level definition for the specialization of the
// C++14 variable template instantiated for built­in type int.

template std::size_t Vector<int>::s_count;
// Generate the object­code­level definition for the specialization of the
// static member variable of Vector instantiated for built­in type int.

} // Close my namespace.

357

lorihughes
Cross-Out

lorihughes
Inserted Text
c

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Inserted Text
namespace my

[transposing current order]




