“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 358 — #384

extern template Chapter 2 Conditionally Safe Features

Each of the constructs introduced by the keyword template within the my namespace in the
previous example represents a separate explicit-instantiation definition. These constructs
instruct the compiler to generate object-level definitions for general templates declared in
my_vector . h specialized on the built-in type int. Explicit instantiation of individual member
functions, such as length() in the example, is, however, only rarely useful; see Annoyances
— All members of an explicitly defined template class must be valid on page 374.

Having installed the necessary explicit-instantiation definitions in the component’s
my_vector.cpp file, we must now go back to its my_vector.h file and, without altering
any of the previously existing lines of code, add the corresponding explicit-instantiation
declarations to suppress redundant local code generation:

// my_vector.h:
#ifndef INCLUDED_MY_VECTOR // internal include guard
#define INCLUDED_MY_VECTOR

namespace my // namespace for all entities defined within this component

{

/...

// ... everything that was in the original my namespace

//
A e
// explicit-instantiation declarations
YA

extern template class Vector<int>;
// Suppress object code for this class template specialized for int.

extern template std::size_t Vector<double>::length() const; // BAD IDEA
// Suppress object code for this member, only specialized for double.

extern template void swap(Vector<int>& lhs, Vector<int>& rhs);
// Suppress object code for this free function specialized for int.

extern template std::size_t vectorSize<int>; // C++14
// Suppress object code for this variable template specialized for int.

extern template std::size_t Vector<int>::s_count;
// Suppress object code for this static member definition w.r.t. int.

} // glose my—namespacer
#endif // glose internal include guard-—

Each of the constructs that begins with extern template in the example above are explicit-
instantiation declarations, which serve only to suppress the generation of any object code

358


lorihughes
Cross-Out

lorihughes
Inserted Text
c

lorihughes
Cross-Out

lorihughes
Inserted Text
c

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Inserted Text
namespace my 

[transposing current order]

lorihughes
Highlight
transpose


