“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 364 — #390

extern template Chapter 2 Conditionally Safe Features

We recompile once again and inspect our newly generated object files:

$ gcc -I. -c app.cpp lib_interval.cpp
$ nm -C app.o lib_interval.o

app.o:
U lib::Interval<double>::Interval(double const&, double const&)
0000000000000000 W lib::Interval<int>::Interval(int const&, int const&)
U bool lib::intersect<double>(1lib::Interval<double> constg&,
lib::Interval<double> const&)
0000000000000000 T main

lib_interval.o:

0000000000000000 W lib::Interval<double>::Interval(double consté&)
0000000000000000 W lib::Interval<double>::Interval(double const&, double const&)
0000000000000000 W lib::Interval<double>::low() const

0000000000000000 W lib::Interval<double>::high() const

000000000000EEOO W lib::Interval<double>::length() const

0000000000000000 W bool lib::intersect<double>(lib::Interval<double> constg&,

lib::Interval<double> const&)

The application object file, app.o, naturally remained unchanged. What’s new here is
that the functions that were missing from the app.o file are now available in the
lib_interval.o file, again as weak (W), as opposed to strong (T), symbols. Notice, how-
ever, that explicit instantiation forces the compiler to generate code for all of the member
functions of the class template for a given specialization. These symbols might all be linked
into the resulting executable unless we take explicit precautions to exclude those that aren’t
needed?:

$ gcc -0 app app.o lib_interval.o -W1l,--gc-sections

$ nm -C app

00000000004005ca W lib::Interval<double>::Interval(double const&, double const&)

000000000040056e W lib::Interval<int>::Interval(int const&, int const&)

000000000040063d W bool lib::intersect<double>(1lib::Interval<double> constg&,
lib::Interval<double> const&)

00000000004004b7 T main

The extern template feature is provided to enable software architects to reduce code bloat
in individual object files for common instantiations of class, function, and, as of C++14,
variable templates in large-scale C++ software systems. The practical benefit is in reducing
the physical size of libraries, which might lead to improved link times. Explicit-instantiation
declarations do not (1) affect the meaning of a program, (2) suppress inline template implicit
instantiation, (3) impede the compiler’s ability to inline, or (4) meaningfully improve

3To avoid including the explicitly generated definitions that are being used to resolve undefined symbols,
we have instructed the linker to remove all unused code sections from the executable. The -Wl option
passes comma-separated options to the linker. The --gc-sections option instructs the compiler to compile
and assemble and instructs the linker to omit individual unused sections, where each section contains, for
example, its own instantiation of a function template.

364


lorihughes
Highlight
remove code font




