
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 371 — #397

i
i

i
i

i
i

Section 2.1 C++11 extern template

Potential Pitfalls

Corresponding explicit-instantiation declarations and definitions

To realize a reduction in object-code size for individual translation units and yet still be
able to link all valid programs successfully into a well-formed program, four moving parts
have to be brought together correctly.

1. Each general template, C<T>, whose object code bloat is to be optimized must be
declared within some designated component’s header file, c.h.

2. The specific definition of each C<T> relevant to an explicit specialization being
optimized — including general, partial-specialization, and full-specialization defini-
tions — must appear in the header file prior to its corresponding explicit-instantiation
declaration.

3. Each explicit-instantiation declaration for each specialization of each separate top-
level — i.e., class, function, or variable — template must appear in the component’s
.h file after the corresponding general template declaration and the relevant general,
partial-specialization, or full-specialization definition, but, in practice, always after all
such definitions, not just the relevant one.

4. Each template specialization having an explicit-instantiation declaration in the header
file must have a corresponding explicit-instantiation definition in the component’s
implementation file, c.cpp.

Absent items (1) and (2), clients would have no way to safely separate out the usability and
inlineability of the template definitions yet consolidate the otherwise redundantly generated
object-level definitions within just a single translation unit. Moreover, failing to provide the
relevant definition would mean that any clients using one of these specializations would either
fail to compile or, arguably worse, pick up the general definitions when a more specialized
definition was intended, likely resulting in an ill-formed program.
Failing item (3), the object code for that particular specialization of that template will be
generated locally in the client’s translation unit as usual, negating any benefits with respect
to local object-code size, irrespective of what is specified in the c.cpp file.
Finally, unless we provide a matching explicit-instantiation definition in the c.cpp file for
each and every corresponding explicit-instantiation declaration in the c.h file as in item (4),
our optimization attempts might well result in a library component that compiles, links, and
even passes some unit tests but, when released to our clients, fails to link. Additionally, any
explicit-instantiation definition in the c.cpp file that is not accompanied by a corresponding

371

lorihughes
Cross-Out

lorihughes
Inserted Text
minimized

lorihughes
Cross-Out

lorihughes
Inserted Text
The relevant definition of each C<T> --- whether it be the general template, a partial specialization, or a full specialization --- must appear in the header file prior to any explicit instantiation declaration that uses it.

lorihughes
Cross-Out

