
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 372 — #398

i
i

i
i

i
i

extern template Chapter 2 Conditionally Safe Features

explicit-instantiation declaration in the c.h file will inflate the size of the c.o file with no
possibility of reducing code bloat in client code:
// c.h:
#ifndef INCLUDED_C // internal include guard
#define INCLUDED_C

template <typename T> void f(T v) {/*...*/} // general template definition

extern template void f<int>(int v); // OK, matched in c.cpp
extern template void f<char>(char c); // Error, unmatched in .cpp file

#endif

// c.cpp:
#include <c.h> // incorporate own header first

template void f<int>(int v); // OK, matched in c.h
template void f<double>(double v); // Bug, unmatched in c.h file

// client.cpp:
#include <c.h>

void client()
{

int i = 1;
char c = 'a';
double d = 2.0;

f(i); // OK, matching explicitinstantiation directives
f(c); // LinkTime Error, no matching explicitinstantiation definition
f(d); // Bug, size increased due to no matching explicitinstantiation

// declaration.
}

In the example above, f(i) works as expected, with the linker finding the definition of
f<int> in c.o; f(c) fails to link because no definition of f<char> is guaranteed to be
found anywhere; and f(d) accidentally works by silently generating a redundant local copy
of f<double> in client.o, while another, identical definition is generated explicitly in
c.o. These extra instantiations do not result in multiply-defined symbols because they
still reside in their own sections and are marked as weak symbols. Importantly, note that
extern template has absolutely no effect on overload resolution because the call to f(c)
did not resolve to f<int>.

372

lorihughes
Cross-Out

lorihughes
Inserted Text
provided

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Inserted Text
ing

lorihughes
Cross-Out

lorihughes
Inserted Text
as illustrated by 




