
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 380 — #406

i
i

i
i

i
i

Forwarding References Chapter 2 Conditionally Safe Features

Similarly, ref-qualifiers other than &&, i.e., & or && along with any cv-qualifiers, do not
alter the deduction process, and they too are applied after deduction:
template <typename T> void rf(T& x);
template <typename T> void crf(const T& x);

void example2(int i)
{

rf(i); // OK, T is deduced as int; x is an int&.
crf(i); // OK, T is deduced as int; x is a const int&.

rf(0); // Error, expects an lvalue for 1st argument
crf(0); // OK, T is deduced as int; x is a const int&.

}

Type deduction works differently for forwarding references where the only qualifier on the
template parameter is &&. For the sake of exposition, consider a function template declara-
tion, f, accepting a forwarding reference, forRef:
template <typename T> void f(T&& forRef);

We saw in the example on page 378 that, when f is invoked with an lvalue of type S, then
T is deduced as S& and forRef becomes an lvalue reference. When f is instead invoked with
an xvalue of type S (see Section 2.1.“Rvalue References” on page 710), then T is deduced
as S and forRef becomes an rvalue reference. The underlying process that results in this
duality relies on reference collapsing (see the next section) and special type deduction
rules introduced for this particular case. When the type T of a forwarding reference is being
deduced from an expression E, T itself will be deduced as an lvalue reference if E is an lvalue;
otherwise, normal type-deduction rules will apply, and T will be deduced as a nonreference
type:
void g()
{

int i;
f(i); // i is an lvalue expression.

// T is therefore deduced as int& special rule!
// T&& becomes int& &&, which collapses to int&.

f(0); // 0 is an rvalue expression.
// T is therefore deduced as int.
// T&& becomes int&&, which is an rvalue reference.

}

For more on general type deduction, see Section 2.1.“auto Variables” on page 195.

Reference collapsing

As we saw in the previous section, when a function having a forwarding reference param-
eter, forRef, is invoked with a corresponding lvalue argument (e.g., a named variable), an

380

lorihughes
Cross-Out

lorihughes
Inserted Text
reference qualifiers

