
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 382 — #408

i
i

i
i

i
i

Forwarding References Chapter 2 Conditionally Safe Features

Notice that we are using the typename keyword in the previous example as a generalized
way of indicating, during template instantiation, that a dependent name is a type as
opposed to a value.1

Identifying forwarding references

The syntax for a forwarding reference (&&) is the same as that for rvalue references; the only
way to discern one from the other is by observing the surrounding context. When used in a
manner where type deduction can take place, the T&& syntax does not designate an rvalue
reference; instead, it represents a forwarding reference. For type deduction to be in effect, a
function template must have a type parameter (e.g., T) and a function parameter of a type
that exactly matches that parameter followed by && (e.g., T&&):
struct S0
{

template <typename T>
void f(T&& forRef);

// Fully eligible for templateargument type deduction: forRef
// is a forwarding reference.

};

Note that if the function parameter is qualified, the syntax reverts to the usual meaning of
rvalue reference:
struct S1
{

template <typename T>
void f(const T&& crRef);

// Eligible for type deduction but is not a forwarding reference: due
// to the const qualifier, crRef is an rvalue reference.

};

If a member function of a class template is not itself also a template, then its template type
parameter will not be deduced:
template <typename T>
struct S2
{

void f(T&& rRef);
// Not eligible for type deduction because T is fixed and known as part
// of the instantiation of S2: rRef is an rvalue reference.

};

1In C++20, the typename disambiguator is no longer required in some of the contexts where a depen-
dent qualified name must be a type. For example, a dependent name used as a function return type —
template <typename T> T::R f(); — requires no typename.

382

lorihughes
Cross-Out

lorihughes
Inserted Text
within a template definition




