
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 385 — #411

i
i

i
i

i
i

Section 2.1 C++11 Forwarding References

auto b = std::begin(std::forward<decltype(r)>(r));
auto e = std::end (std::forward<decltype(r)>(r)); // BAD IDEA:

// r might be moved from.

Forwarding r only in the initialization of e might avoid issues caused by moving an object
twice but might result in inconsistent behavior with b:
auto b = std::begin(r);
auto e = std::end(std::forward<decltype(r)>(r)); // BAD IDEA: e might have

// a different type than b.

The std::forward utility

The final piece of the forwarding reference infrastructure is the std::forward utility func-
tion. Since the expression naming a forwarding reference x is always an lvalue due to its
reachability by either name or address and since our intention is to move x in case it was
originally an rvalue, we need a conditional move operation that will move x only in that
case and otherwise let x pass through as an lvalue.
The Standard Library provides two overloads of the std::forward function in the <utility>
header:
namespace std {
template <class T> T&& forward(typename remove_reference<T>::type& t) noexcept;
template <class T> T&& forward(typename remove_reference<T>::type&& t) noexcept;
}

Note that, to avoid ambiguity, the second overload will be deliberately removed from the
overload set if T is an lvalue reference type.
Recall that the type T associated with a forwarding reference is deduced as a reference type if
given an lvalue reference and as a nonreference type otherwise. So for a forwarding reference
forRef of type T&&, we have two cases.

1. An lvalue of type U was used for initializing forRef, so T is U&; thus, the first overload
of forward will be selected and will be of the form U& forward(U& u) noexcept, thus
just returning the original lvalue reference. Notice the effect of reference collapsing in
the return type: (U&)&& becomes simply U&.

2. An rvalue of type U was used for initializing forRef, so T is U, and the second overload
of forward will be selected and will be of the form U&& forward(U&& u) noexcept,
essentially equivalent to std::move.

Note that, in the body of a function template accepting a forwarding reference T&& named x,
std::forward<T>(x) could be replaced with static_cast<T&&>(x) to achieve the same
effect. Due to reference collapsing rules, T&& will resolve to T& whenever the original value
category of x was an lvalue and to T&& otherwise, thus achieving the conditional move
behavior elucidated in Description on page 377. Using std::forward over static_cast,
however, expresses the programmer’s intent explicitly.

385

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Inserted Text
is never intended to be invoked because `forward` is intended to be always passed an lvalue. The program is ill formed if `forward` is passed an rvalue. 

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Inserted Text
and when the first overload of `forward` is selected once again, it




