
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 390 — #416

i
i

i
i

i
i

Forwarding References Chapter 2 Conditionally Safe Features

On the surface there does seem to be a difference between how objects untracked and
tracked are constructed. The first variable is having its constructor directly invoked, while
the second is being constructed from an object being returned by-value from
trackConstruction. This construction, however, has long been something that has been
optimized away to avoid any additional objects and construct the object in question just
once. In this case, because the object being returned is initialized by the return statement of
trackConstruction, the optimization is called return value optimization (RVO). C++
has always allowed this optimization by enabling copy elision. Ensuring that this elision
actually happens (on all current compilers of which the authors are aware) is possible by
publicly declaring but not defining the copy constructor for BigObject.3 We find that
this code will still compile and link with such an object, providing observable proof that the
copy constructor is never actually invoked with this pattern.

Emplacement

Prior to C++11, inserting an object into a Standard Library container always required
the programmer to first create such an object and then copy it inside the container’s
storage. As an example, consider inserting a temporary std::string object in an
std::vector<std::string>:
void f(std::vector<std::string>& v)
{

v.push_back(std::string("hello world"));
// invokes std::string::string(const char*) and the copy constructor

}

In the function above, a temporary std::string object is created on the stack frame of
f and is then copied to the dynamically allocated buffer managed by v. Additionally, the
buffer might have insufficient capacity and hence might require reallocation, which would
in turn require every element of v to be copied from the old buffer to the new, larger one.
In C++11, the situation is significantly better thanks to rvalue references. The temporary
will be moved into v, and any subsequent buffer reallocation will move the elements between
buffers rather than copy them, assuming that the element’s move constructor has a noexcept
specifier (see Section 3.1.“noexcept Specifier” on page 1085). The amount of work can,
however, be further reduced: What if, instead of first creating an object externally, we
constructed the new std::string object directly in v’s buffer?
This is where emplacement comes into play. All standard library containers, including
std::vector, now provide an emplacement API powered by variadic templates (see Sec-
tion 2.1.“Variadic Templates” on page 873) and perfect forwarding (see Perfect forwarding
for generic factory functions on page 388). Rather than accepting a fully-constructed ele-
ment, emplacement operations accept an arbitrary number of arguments, which will in turn

3In C++17, this copy elision can be guaranteed and is allowed to be done for objects that have no copy
or move constructors.

390

lorihughes
Cross-Out

lorihughes
Inserted Text
Note that declaring the copy constructor to be deleted would lead to a compilation error prior to C++17 in which




