
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 395 — #421

i
i

i
i

i
i

Section 2.1 C++11 Forwarding References

void f()
{

Dictionary d;

std::string s = "car";
d.addWord(s); // instantiates addWord<std::string&>

const std::string cs = "toy";
d.addWord(cs); // instantiates addWord<const std::string&>

d.addWord("house"); // instantiates addWord<char const(&)[6]>
d.addWord("garage"); // instantiates addWord<char const(&)[7]>
d.addWord(std::string{"ball"}); // instantiates addWord<std::string&&>

}

Depending on the variety of argument types supplied to addWord, having many call sites
could result in an undesirably large number of distinct template instantiations, perhaps
significantly increasing object code size, compilation time, or both.

std::forward<T> can enable move operations

Invoking std::forward<T>(x) is equivalent to conditionally invoking std::move if T is an
lvalue reference. Hence, any subsequent use of x is subject to the same caveats that would
apply to an lvalue cast to an unnamed rvalue reference; see Section 2.1.“Rvalue References”
on page 710:
template <typename T>
void f(T&& x)
{

g(std::forward<T>(x)); // OK
g(x); // Oops! x could have already been moved from.

}

Once an object has been passed as an argument using std::forward, it should typically not
be accessed again because it could now be in a moved-from state.

A perfect-forwarding constructor can hijack the copy constructor

A single-parameter constructor of a class S accepting a forwarding reference can unexpect-
edly be a better match during overload resolution compared to S’s copy constructor:
struct S
{

S(); // default constructor
template <typename T> S(T&&); // forwarding constructor
S(const S&); // copy constructor

};

395

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Inserted Text
r




