
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 398 — #424

i
i

i
i

i
i

Forwarding References Chapter 2 Conditionally Safe Features

same syntax. For any given type T, whether the T&& syntax designates an rvalue reference
or a forwarding reference depends entirely on the surrounding context.5

template <typename T> struct S0 { void f(T&&); }; // rvalue reference
struct S1 { template <typename T> void f(T&&); }; // forwarding reference

Furthermore, even if T is subject to template argument deduction, the presence of any
qualifier will suppress the special forwarding-reference deduction rules:
template <typename T> void f(T&&); // forwarding reference
template <typename T> void g(const T&&); // const rvalue reference
template <typename T> void h(volatile T&&); // volatile rvalue reference

It is remarkable that we still do not have some unique syntax — hypothetically, &&& —
that we could use, at least optionally, to imply unequivocally a forwarding reference that is
independent of its context.

Metafunctions are required in constraints

As we showed in Use Cases on page 386, being able to perfectly forward arguments of the
same general type and effectively leave only the value category of the argument up to type
deduction is a frequent need.
The challenge of correctly forwarding only the value category, however, is significant. The
template must be constrained using SFINAE and the appropriate type traits to disallow
types that aren’t some form of a cv-qualified or ref-qualified version of the type that we
want to accept. As an example, let’s consider a function intended to copy or move a Person
object into a data structure:

5In C++20, developers might be subject to additional confusion due to the new terse concept notation
syntax, which allows function templates to be defined without any explicit appearance of the template
keyword. As an example, a constrained function parameter, like Addable auto&& a in the example below,
is a forwarding reference; looking for the presence of the mandatory auto keyword is helpful in identifying
whether a type is a forwarding reference or rvalue reference:

template <typename T>
concept Addable = requires(T a, T b) { a + b; };

void f(Addable auto&& a); // C++20 terse concept notation

void example()
{

int i;

f(i); // OK, decltype(a) is int& in f.
f(0); // OK, decltype(a) is int&& in f.

}

398

lorihughes
Inserted Text
Furthermore, in those rare cases where we want to write a function that accepts only an *rvalue* reference to the template parameter type, there is no simple syntax for doing so; we must write `T&&` and then constrain the function template, which is cryptic.




