
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 399 — #425

i
i

i
i

i
i

Section 2.1 C++11 Forwarding References

#include <type_traits> // std::decay, std::enable_if, std::is_same

class Person;
class PersonManager {

// ...
public:

template <typename T, typename = typename std::enable_if<
std::is_same<typename std::decay<T>::type, Person>::value>::type>

void addPerson(T&& person) { /*...*/ }
// This function participates in overload resolution only if T is
// (possibly cv­ or ref­qualified) Person.

// ...
};

This pattern that constrains T has five layers to it, so let’s unpack them one at a time.

1. T is the template argument we are trying to deduce. We’d like to limit it to being a
Person that is const, volatile, &, &&, or some possibly empty combination of those.

2. std::decay<T>::type is then the application of the standard metafunction
(defined in <type_traits>) std::decay to T. This metafunction removes all cv-
qualifiers and ref-qualifiers from T, and so, for the types to which we want to
limit T, the result of applying decay will always be Person. Note that decay will
also allow some other implicitly convertible transformations, such as con-
verting an array type to the corresponding pointer type. For types we are concerned
with (i.e., those that decay to a Person), this metafunction is equivalent to
std::remove_cv<std::remove_reference<T>::type>::type.6 Due to historical avail-
ability and readability, we will continue with our use of decay for this purpose.

3. std::is_same<std::decay<T>::type, Person>::value is then the application of an-
other metafunction, std::is_same, to two arguments (i.e., our decay expression and
Person, which results in a value that is either std::true_type or std::false_type),
special types that can at compile time convert expressions to true or false. For the
types T that we care about, this expression will be true, and for all other types, this
expression will be false.

4. std::enable_if<X>::type is yet another metafunction that evaluates to a valid type
if and only if X is true. Unlike the value in std::is_same, this expression is simply
not valid if X is false.

5. Finally, by using this enable_if expression as a default argument for the final tem-
plate parameter (unused, so left unnamed), the expression is going to be instantiated
for any deduced T considered during overload resolution for addPerson. For any T that

6C++20 provides the std::remove_cvref<T> metafunction that can be used to remove cv and reference
qualifiers in a terse manner.

399

lorihughes
Inserted Text
)

lorihughes
Cross-Out




