
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 414 — #440

i
i

i
i

i
i

Generalized PODs '11 Chapter 2 Conditionally Safe Features

Now that we have classified what kinds of user-defined types are considered aggregate types
in C++03, let’s step back and appreciate the complete set of C++03 POD types. We
begin by observing that all of the scalar types are POD types in every version of C++:

+­­­+
| All C++03 Types |
| |
| .­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­. |
	C++03 Aggregate Types			
	.­­­­­­­­­­­­­­­­­­­­­­­­­.			
		C++03 POD classes		
`­­+ ­ ­ C++03 POD Types ­ ­ +­­'				
	C++03 Scalars			
`­­­­­­­­­­­­­­­­­­­­­­­­­'				
+­­­+

A C++03 scalar is a possibly const or volatile arithmetic type, enumeration type, pointer
type, or pointer-to-member type:

int i = { 0 }; // integer
const short cs = { 0 }; // const short

double d = { 0.0 }; // floating point
enum E { } e = { E() }; // enumeration
char* p = { 0 }; // pointer to char

const char* pc = { 0 }; // pointer to const char
char* const cp = { 0 }; // const pointer to char

class C; int C::*pm = { 0 }; // pointer to int member data
void (C::*pmf)() = { 0 }; // pointer to void member function

As it turns out, scalars can also be initialized using the braced notation in C++03, just
not with empty braces. A C++03 POD-struct is an aggregate class, declared with either
the struct or class class key, that has no non-POD-struct members, no non-POD-union
members, no array members having non-POD elements, no nonstatic reference members,
and no user-declared copy-assignment operator or destructor:
// Class declaration Is a C++03 POD?
class B0 { }; // Yes, an empty (aggregate) class is a POD.
class B1 { public: int x; }; // Yes, public data
class B2 { int f(); }; // Yes, private non­virtual function
class B3 { static B1 x; }; // Yes, static members don't matter
struct B4 { ~B4(); }; // No, a destructor cannot be declared.
struct B5 { B5& operator=(const B5&); };

// No, copy assignment cannot be declared.
struct B6 { int* x; }; // Yes, pointers are allowed in PODs too.
struct B7 { B1 x; }; // No, any data members must also be PODs.

414

lorihughes
Cross-Out

lorihughes
Inserted Text
5

