“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 414 — #440

Generalized PODs '11

Chapter 2 Conditionally Safe Features

Now that we have classified what kinds of user-defined types are considered aggregate types
in C+4-03, let’s step back and appreciate the complete set of C++403 POD types. We
begin by observing that all of the scalar types are POD types in every version of C++:

| C++03 POD classes |

--+ - - C++03 POD Types - - +--

| C++03 Scalars |

A C++03 scalar is a possibly const or volatile arithmetic type, enumeration type, pointer
type, or pointer-to-member type:

const

const

class C;

int i ={oe 1},
short cs ={o0 };
double d ={0.0},;
enum E { } e ={EO };
char* p ={0 };
char* pc ={0 };
char* const cp ={0 1,
int C::*pm ={o 3}
void (C::*pmf)() = { © };

//
//
//
//
//
//
//
//
//

integer

const short

floating point

enumeration

pointer to char

pointer to const char

const pointer to char

pointer to int member data
pointer to void member function

As it turns out, scalars can also be initialized using the braced notation in C+403, just
not with empty braces. A C++403 POD-struct is an aggregate class, declared with either
the struct or class class key, that has no non-POD-struct members, no non-POD-union
members, no array members having non-POD elements, no nonstatic reference members,
and no user-declared copy-assignment operator or destructor:

// Class declaration

class BO
class B1
class B2
class B3
struct B4
struct B5

struct B6
struct B7

414

{

{
{
{
{
{

Is a

}; // Yes,
public: int x; }; // Yes,
int f(); }; // Yes,
static Bl x; }; // Yes,
~B4(); }; // No,
B5& operator=(const B5&); };
// No,

int* x; }; // Yes,
B x; }; // No,

C++03 POD?

an empty (aggregate) class is a POD.
public data

private non-virtual function

static members don't matter
a destructor cannot be declared.

copy assignment cannot be declared.
pointers are allowed in PODs too.
any data members must also be PODs.


lorihughes
Cross-Out

lorihughes
Inserted Text
5




