
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 418 — #444

i
i

i
i

i
i

Generalized PODs '11 Chapter 2 Conditionally Safe Features

2. The type has no virtual base classes:
// Type Is standard layout?
struct B1 { }; // yes
struct S1a : B1 { }; // Yes, base class is not virtual.
struct S1b : virtual B1 { }; // No, base class is virtual.

3. The type has no virtual functions:
// Type Is standard layout?
struct S2a { void f(); }; // yes, has function that is not virtual
struct S2b { virtual void f(); }; // no, has virtual function

4. All nonstatic data members, including bit fields, within the type have the same access
control, i.e., any of public, protected, or private:
// Type Is standard layout?
struct S3a { private: int x; private: int y; }; // yes, all members private
struct S3b { private: int x; public: int y; }; // no, not same access
struct S3c { int x; private: public: int y; }; // yes, all members public

5. All nonstatic data members, including bit fields, of the type, e.g., class S, are direct
members of a single class within the class hierarchy of S; i.e., if any nonstatic
data members reside in any direct or indirect base class of S, then no nonstatic data
members reside in S or any other base class of S. Otherwise, any base classes of S must
be empty:
// Type Is standard layout?
struct A4 { }; // yes, empty class
struct B4 { char c; }; // yes, no base classes
struct S4a : A4 { }; // Yes, base and derived classes are empty.
struct S4b : B4 { }; // Yes, only base class is nonempty.
struct S4c : A4 { int i; }; // Yes, only derived class is nonempty.
struct S4d : B4 { int i; }; // no, nonempty base and derived classes
struct S4e : A4, B4 { }; // Yes, only one base class is nonempty.
struct S4f : B4, S4c { }; // No, two base classes are nonempty.

6. The type has no direct or indirect base classes with the same type as a subobject
that would have a 0 offset within the type, e.g., the first nonstatic data member of
a class type, any member of a union type, and any base classes of those members.
This requirement of standard-layout types is a consequence of the unique-object-
address requirement, which states that no two distinct objects of the same type B
within a class C are ever permitted to share the same address, even if B is an empty
class type; hence, if this criterion would otherwise be violated, the compiler is required
to adjust the object layout in a way that necessarily prevents C from satisfying the
required property of standard-layout types that the address of an object is the same
as the address of its first nonstatic data member (see Standard-layout class special
properties on page 420):

418

lorihughes
Highlight
[set the whole term in gloss font and static in code font, x6]

lorihughes
Highlight

lorihughes
Highlight

lorihughes
Highlight

lorihughes
Highlight

lorihughes
Highlight




