
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 419 — #445

i
i

i
i

i
i

Section 2.1 C++11 Generalized PODs '11

// Type Is standard layout?
struct X5 { }; // yes
struct Y5 { }; // yes
struct S5a { X5 x; Y5 y; }; // yes, no base class
struct S5b : X5 { X5 x; Y5 y; }; // No, base is same type as first member.
struct S5c : Y5 { X5 x; Y5 y; }; // Yes, base is not same as first member.
struct S5d : X5, Y5 { X5 x; Y5 y; }; // No, base is same type as first member.
struct S5e : Y5, X5 { X5 x; Y5 y; }; // No, " " " " " " "

Note that extra padding needs to be added to S5b precisely because the base class
X5 subobject and the member X5 subobject x cannot exist at the same location. The
member y of s5c does not cause such padding because it is not the first member, so
it would not have the same offset as the base class Y5 subobject:
static_assert(1 == sizeof(X5), ""); // OK
static_assert(1 == sizeof(Y5), ""); // OK
static_assert(2 == sizeof(S5a), ""); // OK
static_assert(3 == sizeof(S5b), ""); // OK, S5b has an extra byte.
static_assert(2 == sizeof(S5c), ""); // OK, base class takes up no space.
static_assert(3 == sizeof(S5d), ""); // OK, S5d has an extra byte.
static_assert(3 == sizeof(S5e), ""); // OK, S5e " " " "

Additional padding to prevent the overlap of a base class subobject and a member,
which prevents a type from being a standard-layout type, can also occur for
members of a different base class or for union data members:
// Type Is standard layout?
struct A5 { }; // yes
struct B5 { A5 a; }; // yes
struct S5f : A5, B5 { }; // No, A5::a would be at offset 0 without padding.

union U5 { char c; A5 a; }; // yes
struct S5g : A5 { U5 u; }; // No, u.a would be at offset 0 without padding.

7. The type has no two direct or indirect base classes of the same type. This restriction
is again a consequence of the unique-object-address requirement combined with addi-
tional padding preventing the first nonstatic data member from having an offset
of 0:
// Type Is standard layout?
struct E6 { }; // Yes, size = 1.
struct F6 { }; // Yes, size = 1.
struct B6E : E6 { }; // Yes, size = 1.
struct B6F : F6 { }; // Yes, size = 1.
struct B6G : E6 { }; // Yes, size = 1.
struct S6a : B6E, B6F { }; // Yes, size = 1, derived from E6 and F6.
struct S6b : B6E, B6G { }; // No, size = 2, derived twice from E6.

419

lorihughes
Highlight
[set the whole term in gloss font and static in code font]




