
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 443 — #469

i
i

i
i

i
i

Section 2.1 C++11 Generalized PODs '11

stream << "Triangle(" << shape.tr.d_side1 <<
", " << shape.tr.d_side2 <<
", " << shape.tr.d_side3 << ')';

} break;
default: {
stream << "Error, unknown discriminator value: " << shape.tg.d_type;

} break;
}
return stream;

}

An application using this framework would look quite similar to the program we saw previ-
ously for the VShape framework except that, instead of constructing a derived-class object,
we construct one of the specific shapes and assign it to a UShape member before passing the
UShape to a polymorphic subroutine:
void doSomethingU(const UShape& shape); // arbitrary subroutine on a UShape

void testU()
{

UShape u; // Default-initialize union; tg is active.
u.ci = UCircle{ k_CI, 3.0 }; // Assign a concrete shape to a union member.
doSomethingU(u); // Invoke function on a circle via UShape.
// ...

}

Importantly, all of the structs participating in our vertically encoded union are of standard-
layout type. Moreover, it so happens that all of the structs are also of trivial type. Being
both standard-layout and trivial, these structs meet the definition of POD. What’s more,
because they comprise only public, nonstatic, data members, they are syntactically and
structurally compatible with structs in the C language; with the addition of a few typedefs
(e.g., typedef struct UCircle UCircle), the same declarations can be compiled by both C
and C++ compilers to produce data structures whose source code is interoperable between
the two languages. That said, the technique shown here can be modified slightly to work
with standard-layout types that are not trivial, and, therefore, not POD types; see Vertical
encoding for non-trivial types (standard layout) on page 448.
Note that the union-based UShape design has a somewhat different usage model than its
protocol-based VShape counterpart. While the VShape base class does not depend on the
set of concrete derived-class shapes, just the opposite is true for UShape and the set of
concrete shape structs. Hence, unlike with VShape, the UShape model doesn’t offer reduced
physical dependencies for clients that merely operate on shapes compared to those that
create them.
Also note the different maintenance trade-offs: In the object-oriented design, adding a new
function for all shapes affects every concrete shape derived from VShape, whereas in the
union-based vertical-encoding design, adding a new shape affects every common operation
on shapes and requires adding a new enumerator to the type tag. The primary advantages

443

lorihughes
Highlight
change to \emcppsgloss[nonstatic data member]{non\lstinline!static! data members}

[note deletion of commas]

lorihughes
Cross-Out

lorihughes
Cross-Out




