“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 448 — #474

Generalized PODs '11 Chapter 2 Conditionally Safe Features

Misuse of unions on page 505. Although getType does not follow the rules in either C or
C++, it nevertheless illustrates a common idiom found in X Window programming.

Because the XEvent union comprises standard-layout POD-struct types that all share a
common (horizontal) initial member sequence, many useful standalone (a.k.a. free) functions
can be written without the runtime overhead of a switch statement:

bool is_sent(XEvent& event) // Determine if an event has been sent.

{ return event.xany.send_event != 0; // OK, regardless of the event type
}
void fake_button()
{
XEvent e;
e.xbutton = XButtonEvent{ButtonPress, 0, true};
assert(is_sent(e));
/] ..
}

The analogous object-oriented implementation would be to derive publicly from a base
struct that encapsulates the common event data.

Finally, Xlib — being a C-language library — has no supported object-oriented alternative,
leaving this procedural union-based approach as an eminently suitable design choice.'®

Vertical encoding for non-trivial types (standard layout)

In the previous use case, we saw how standard-layout structs having a common initial
member sequence can be united in a union to achieve vertical encoding. The examples were
simple but had a few limitations, which we’ll explore here, along with an approach to lift
such limitations.

The API for ushape and for the individual shapes is manifestly C-like: All data members are
public, there are no constructors to ensure that UShape is in a usable state, and the shapes
cannot manage external resources because they are required to be trivial types and, thus, do
not have destructors for releasing such resources. Though usable, the framework lacks C+-+’s
renowned automatic resource-management capabilities. Consider the implementations of a
generic draw function for objects of type UShape along with a function, f1, that haplessly
endeavors to use it:

#include <iostream> // std::ostream, std::cout

std::ostream& draw(std::ostream& stream, const UShape& shape)

{
switch (shape.tg.d_type)

18The X Toolkit Intrinsics (Xt) took a different approach: implementing an object-oriented interface in
C, complete with virtual-table-like data structures; see mccormack94.

448


lorihughes
Inserted Text
const 




