
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 47 — #73

i
i

i
i

i
i

Section 1.1 C++11 Delegating Ctors

If an exception is thrown while executing a nondelegating constructor, the object being
initialized is considered only partially constructed (i.e., the object is not yet known to
be in a valid state), and hence its destructor will not be invoked:
#include <iostream> // std::cout

struct S2
{

S2() { std::cout << "S2() "; throw 0; }
~S2() { std::cout << "~S2() "; }

};

void f() try { S2 s; } catch(int) { }
// prints only "S2() " to stdout (the destructor of S2 is never invoked)

Although the destructor of a partially constructed object will not be invoked, the destructors
of each successfully constructed base and of data members will still be invoked:
#include <iostream> // std::string

using std::cout;
struct A { A() { cout << "A() "; } ~A() { cout << "~A() "; } };
struct B { B() { cout << "B() "; } ~B() { cout << "~B() "; } };

struct C : B
{

A d_a;

C() { cout << "C() "; throw 0; } // nondelegating constructor that throws
~C() { cout << "~C() "; } // destructor that never gets called

};

void f() try { C c; } catch(int) { }
// prints "B() A() C() ~A() ~B()" to stdout

Notice that base class B and member d_a of type A were fully constructed, and so their respec-
tive destructors are called, even though the destructor for class C itself is never executed.
However, if an exception is thrown in the body of a delegating constructor, the object being
initialized is considered fully constructed, as the target constructor must have returned
control to the delegator; hence, the object’s destructor is invoked:

47

lorihughes
Cross-Out

lorihughes
Inserted Text
delegating constructor

lorihughes
Cross-Out

lorihughes
Inserted Text
or

lorihughes
Cross-Out




