“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 475 — #501

Section 2.1 C++11 Generalized PODs '11

template <typename T>
typename std::enable_if<std::is_trivially_copyable<T>::value>::type
copyArray(T* dst, const T* src, std::size_t n)

// Copy src array of size n to dst array by dint of trivial copyability.

{
std::memcpy(dst, src, n * sizeof *dst); // Copy all Ts at once quickly.

}

The first overload is selected for types that are not trivially copyable; each dst array element
is individually assigned a value from src. The second overload is selected only for trivially
copyable types, providing an optimized assignment from src to dst via a single call to
std: :memcpy.

We can now use our generic copyArray to replace copyArrayOfRecords for assigning the
value of an array of FixedCapacityString objects:

void f3()
{

copyArray(duplicate, original, numStrings); // generic fast array copy

for (std::size_t i = 0; i < numStrings; ++i) // same as in f2 (above)
{
assert(original[i] == duplicate[i]);
}
}

The call to copyArray in f3() (above) invokes the optimized (memcpy-based) overload
because FixedCapacityString<30> is a trivially copyable type. Similar code using
std: :string, being of non-trivially copyable type, would choose the unoptimized (element-
by-element assignment) overload instead and, hence, would not be an appropriate record
type for this use case.

Another potential benefit of trivially copyable types is that they can be safely copied into
an array of unsigned char and inspected — e.g., for debugging purposes — as a “bag of
bits,” provided we don’t access any bytes having indeterminate value. When copying an
object of trivially copyable type to an unsigned char array, indeterminate values can come
from two sources: (1) padding bytes and (2) any bytes in the object representation that
correspond to uninitialized nonstatic data members; see Potential Pitfalls — Conflating
arbitrary values with indeterminate values on page 493. Our FixedCapacityString template
was deliberately engineered to obviate padding bytes, but any unused bytes in d_buffer will
have indeterminate value. If we want to make the entire footprint of FixedCapacityString
inspectable as raw bytes, we will need to initialize the entire d_buffer in every user-
provided constructor, e.g., using std: :memset(d_buffer, ©, N). Because only the default
and value constructors are affected, the object remains trivially copyable albeit somewhat
less runtime efficient to construct.

475


lorihughes
Highlight
[set the whole term in gloss font and static in code font]




