
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 490 — #516

i
i

i
i

i
i

Generalized PODs '11 Chapter 2 Conditionally Safe Features

assignment, the copy and move constructor, and the destructor are all guaranteed to be
trivial but not necessarily usable, and only the destructor and one of the copy operations is
declared and not deleted:
#include <cassert> // standard C assert macro
#include <new> // placement new
#include <cstring> // std::memcpy

void copy1a()
{

int a = 1, b = 2;
a = b; // assignment
assert(2 == a);

}

void copy1b()
{

int a = 1, b = 2;
new(&a) int(b); // copy construction using placement new
assert(2 == a);

}

void copy1c()
{

int a = 1, b = 2;
std::memcpy(&a, &b, sizeof b); // bitwise copy
assert(2 == a);

}

All three of the functions above produce well-defined results that are indistinguishable from
one another.
Let’s now consider a struct (e.g., S) that is of trivial type and yet contains a nonstatic
const data member (e.g., const int i) and another struct (e.g., B) that is of trivial type
and yet contains a nonstatic data member of reference type (e.g., int& r). In both cases,
the implicitly declared default constructor, copy-assignment operator, and move-assignment
operator are deleted:
#include <type_traits> // std::is_trivially_copyable

// std::is_trivially_copy_constructible (etc.)

struct S // S is trivial yet neither default constructible nor assignable.
{

const int i; // const member i must be initialized at construction.
};

static_assert(std::is_trivial<S>::value, ""); // OK
static_assert(!std::is_trivially_default_constructible<S>::value, ""); // OK
static_assert(!std::is_default_constructible<S>::value, ""); // OK

490

lorihughes
Highlight
[set the whole term in gloss font and static in code font]

lorihughes
Highlight
[set the whole term in gloss font and static in code font]

lorihughes
Inserted Text
const

[code font; no gloss]

lorihughes
Cross-Out

