“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 492 — #518

. ' ..

Generalized PODs '11 Chapter 2 Conditionally Safe Features
int x1 = a.i; // Bug (UB), cannot refer to new object through a
int x2 = pa->i; // OK, can access through value returned from new
assert(x2 == 2); // 0K, const member S::i was overwritten.

int i1 = 1, i2 = 2;
Bc=4{1i1}, d = { i2 };
B* pc = new (&c) B(d); // OK, copy construction

int& y1 = c.r; // Bug (UB), cannot refer to new object through c
int& y2 = pc->r; // OK, can access through return value of new
assert(&y2 == &i2); // OK, reference member B::r was rebound.
}
void copy2c() // using std::memcpy
{
sa={1} b={2%
std::memcpy(&a, &b, sizeof b); // OK, bitwise copy
int x = a.i; // Bug (UB), cannot refer to new object through a
int i1 =1, i2 = 2;
Bc=4{1i1}, d ={ 1i2 };
std::memcpy(&c, &d, sizeof d); // OK, bitwise copy
int& y = c.r; // Bug (UB), cannot refer to new object through c
}

In copy2a, the assignment operation fails at compile time. In copy2b, using copy construction
and placement new works. Moreover, it is valid to access the newly created object via the
value returned from placement : :operator new, but not directly through the original name
— even though they refer to the same address. In copy2c, it is also valid to std: :memcpy
from one object to another of the same trivially copyable type. Attempting to access the data
members via the original names, however, leads similarly to UB, but, unlike with placement
new, there is no valid new pointer available to use to access the newly created object. Hence,
although it is not undefined behavior to use std: :memcpy, it can serve no well-defined useful
purpose.

Note, however, that as of C++20, reusing the name, reference, or pointer to an object that
was destroyed and re-created (e.g., via std::memcpy or placement std::operator new) is
now considered valid, even if the object contains a nonstatic mmember of const-qualified
or reference-qualified type, thus eliminating the undefined behavior in both copy2b and
copy?2a, yet std: :memcpy remains effectively unusable on such types in C++11 and C++14
(and C++17) as originally specified; see Annoyances — The C++ Standard has not yet
stabilized in this area on page 521.

As a workaround on older compilers, one might try to mitigate such dangerous
optimization in the implementation by combining std::is_trivially copyable with
std::is_assignable to prevent applying std::memcpy to types like S having const
subobjects:

492


lorihughes
Inserted Text
miller19 as well as

lorihughes
Inserted Text
data

lorihughes
Highlight
[set the whole term in gloss font and static in code font]




