
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 517 — #543

i
i

i
i

i
i

Section 2.1 C++11 Generalized PODs '11

#include <cstring> // std::memcpy

int returnOne() // invalid attempt to return (int) 1
{

unsigned int x = 1; // object of trivially copyable type
alignas(int) unsigned char a[sizeof x]; // aligned array of bytes
std::memcpy(a, &x, sizeof x); // copy object representation
int* x2 = reinterpret_cast<int*>(a); // OK, but not OK to use
return *x2; // Bug (UB), no int at x2

}

As previously mentioned, the reinterpret_cast itself is valid, but the resulting pointer
(x2, above) does not refer to a valid object of type int; hence, dereferencing x2 has
undefined behavior.43

6. Accessing base or member subobjects via reinterpret_cast — The C++ Stan-
dard guarantees that objects of standard-layout class type share the same address as
certain subobjects when they exist, namely, the first nonstatic data member (includ-
ing within any base class) and all base-class subobjects. This guarantee does not,
however, hold for any other subobjects, nor for any subobjects of a non-standard-
layout type. Note that the requirement that all base class subobjects of a
standard-layout class type have the same address as the most-derived class object
was not in the C++11 or C++14 Standards as published and was not codified until
June 2018 with the resolution of CWG 2254 as a defect report44; not all compilers
have yet implemented the resolution described in CWG 2254, however, resulting in
unreliable placement of the second and subsequent base-class subobjects.
For example, suppose we have a standard-layout class type, D, that has two base
classes, B1 and B2:
struct B1 { int i; int j; }; // first base class (standard layout)
struct B2 { int f(); }; // second base class " "
struct D : B1, B2 { }; // multiple inheritance " "

A subobject of the first base class, B1, and the first nonstatic data member, i, will
reside at the same address (e.g., b1p and i1p, respectively) as that of the derived class
object (e.g., &d). Moreover, in compilers that conform to the changes in the resolution
of CWG issue 2254, a subobject of the second base class, B2, will also reside at that
address (e.g., b2p):

43As of C++20, we use std::bit_cast<T>(x) to implicitly create an object of the destination type, T,
from the value representation of the source object, x, where sizeof(T) == sizeof(x) and both are trivially
copyable. Future versions of C++ might someday render returning *x2 from the returnOne function valid,
thereby obviating our writing std::bit_cast<unsigned int>(*x2); see smith20.

44The resolution of CWG 2254 (smith16a) requires that all of the base class subobjects of an object of
standard-layout type must have the same address as the object. Although not all compilers conform to this
change and notably MSVC 19.29 (c. 2021) does not, all implementations at least ensure that the first base
class subobject shares the address of the most-derived class object.

517

lorihughes
Highlight
[set the whole term in gloss font and static in code font]

lorihughes
Highlight
[set the whole term in gloss font and static in code font]




