
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 526 — #552

i
i

i
i

i
i

Generalized PODs '11 Chapter 2 Conditionally Safe Features

struct D : B { }; // D is non-trivial even though B is.

static_assert(std::is_trivial<D>::value, ""); // Error
static_assert(std::is_trivially_default_constructible<D>::value, ""); // Error
static_assert(std::is_trivially_copyable<D>::value, ""); // OK

D d; // Error, default constructor of D is implicitly deleted.

Because D has a deleted default constructor, an up-to-date conforming C++11/14
(or later) implementation will report D (above) as being trivially copyable, but not of
trivial type, yet older compilers might wrongly allow D to pass for a trivial type. Several work-
arounds exist. A library implementer could, for example, employ the
std::is_trivially_default_constructible trait to ensure that the default
constructor is in fact invocable (as well as being unambiguous and accessible) with respect
to the type expression on which the trait is applied. Note that
std::is_trivially_default_constructible does not distinguish between a
type that cannot be default constructed at all (i.e.,
std::is_default_constructible evaluates to false) and a type whose default construc-
tion involves non-trivial functions.
Similarly, the definition of standard-layout type has matured since it was made distinct from
POD type in C++11. After C++14 was released, the Standard clarified the requirement
that there be at most one class in the derivation tree of a standard-layout type that “has”
one or more nonstatic data members and extended the definition of a standard-layout type
to include unnamed bit fields as well.56

The type of any base class of a standard-layout type cannot be the same as any nonstatic
data member that would be at offset zero within objects of that type; otherwise, uniqueness
of object address would be violated. C++17 provides a more rigorous, recursive definition of
the set of types of all non-base-class subobjects that must be at offset zero, and requires
that there be no overlap between this set and any direct or indirect base classes of a type
to be considered a standard-layout class.57 Subsequent Standards also make explicit that
a standard-layout class has at most one base class subobject of any given type.58 These
later definitions also clarified what the first nonstatic data member means. Despite all of
these clarifications being defect reports against C++14 and, in practice, against C++11, the
std::is_standard_layout trait might not accurately represent the up-to-date definition of
standard-layout type; again, see Relevant standard type traits are unreliable on page 527.
Finally, in C++03, allowing the flow of control to bypass (e.g., via a goto) the declaration
of an automatic variable required that it be of POD type needing no initialization. As of
C++11, the constraints on the type of such a variable were relaxed to no longer require that
it be of either standard-layout type or trivial type, so long as the class had both a trivial

56See CWG issue 1881; ranns14.
57See CWG issue 1672 (smith13) and CWG issue 2120 (tong15).
58See CWG issue 1813; vandevoorde13.

526

lorihughes
Highlight
[set the whole term in gloss font and static in code font, x3]

lorihughes
Highlight

lorihughes
Highlight




