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Deleted Functions Chapter 1  Safe Features

Consider a class, FileHandle, that uses the RAII idiom to safely acquire and release an I/0
stream. As copy semantics are typically not meaningful for such resources, we will want to
suppress generation of both the copy constructor and copy assignment operator. Prior
to C++11, there was no direct way to express suppression of special member functions in
C++. The commonly recommended workaround was to declare the two methods private
and leave them unimplemented, typically resulting in a compile-time or link-time error when
accessed:

#include <cstdio> // FILE
class FileHandle

{
private:
/7 ..
FileHandle(const FileHandle&); // not implemented
FileHandle& operator=(const FileHandle&); // not implemented
public:
explicit FileHandle(FILE* filePtr);
~FileHandle();
/7 ..
}

Not implementing a special member function that is declared to be private ensures that
there will be at least a link-time error in case that function is inadvertently accessed from
within the implementation of the class itself. With the =delete syntax, we are able to (1)
explicitly express our intention to make these special member functions unavailable, (2) do
so directly in the public region of the class, and-(3) enable clearer compiler diagnostics;

class FileHandle

{
private:
/7.
// Declarations of copy constructor and copy assignment are now public.

public:
explicit FileHandle(FILE* filePtr);
~FileHandle();

FileHandle(const FileHandle&) = delete; // make unavailable
FileHandle& operator=(const FileHandle&) = delete; // make unavailable
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, and (4) make compile-time decisions through the use of SFINAE when applied to these functions
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