“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 54 — #80

Deleted Functions Chapter 1 Safe Features

Consider a class, FileHandle, that uses the RAII idiom to safely acquire and release an I/0
stream. As copy semantics are typically not meaningful for such resources, we will want to
suppress generation of both the copy constructor and copy assignment operator. Prior
to C++11, there was no direct way to express suppression of special member functions in
C++. The commonly recommended workaround was to declare the two methods private
and leave them unimplemented, typically resulting in a compile-time or link-time error when
accessed:

#include <cstdio> // FILE
class FileHandle

{
private:
/7 ..
FileHandle(const FileHandle&); // not implemented
FileHandle& operator=(const FileHandle&); // not implemented
public:
explicit FileHandle(FILE* filePtr);
~FileHandle();
/7 ..
}

Not implementing a special member function that is declared to be private ensures that
there will be at least a link-time error in case that function is inadvertently accessed from
within the implementation of the class itself. With the =delete syntax, we are able to (1)
explicitly express our intention to make these special member functions unavailable, (2) do
so directly in the public region of the class, and-(3) enable clearer compiler diagnostics;

class FileHandle

{
private:
/7.
// Declarations of copy constructor and copy assignment are now public.

public:
explicit FileHandle(FILE* filePtr);
~FileHandle();

FileHandle(const FileHandle&) = delete; // make unavailable
FileHandle& operator=(const FileHandle&) = delete; // make unavailable

/]
i

54

lorihughes
Cross-Out

lorihughes
Inserted Text
, and (4) make compile-time decisions through the use of SFINAE when applied to these functions

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

