
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 541 — #567

i
i

i
i

i
i

Section 2.1 C++11 Inheriting Ctors

tains data, constructors, and pure virtual functions.2 Such inheritance, known as imple-
mentation inheritance, is decidedly distinct from pure interface inheritance, which
is often the preferred design pattern in practice.3 As an example, consider a base class,
NetworkDataStream, that allows overriding its virtual functions for processing a stream of
data from an expanding variety of arbitrary sources over the network:
class NetworkDataStream
{
private:

// ... (member data)

public:
explicit NetworkDataStream(TCPConnection* tcpConnection);
explicit NetworkDataStream(UDPConnection* udpConnection);
explicit NetworkDataStream(RawDataStreamHandle* rawDataStreamHandle);

virtual ~NetworkDataStream();

virtual void onPacketReceived(DataPacket& dataPacket) = 0;
// Derived classes must override this method.

};

The NetworkDataStream class above provides three constructors, with more under develop-
ment, that can be used assuming no per-packet processing is required. Now, imagine the
need for logging information about received packets (e.g., for auditing purposes). Inherit-
ing constructors make deriving from NetworkDataStream and overriding (see Section 1.1.
“override” on page 104) onPacketReceived(DataPacket&) more convenient because we
don’t need to reimplement each of the constructors, which are anticipated to increase in
number over time:
class LoggedNetworkDataStream : public NetworkDataStream
{
public:

using NetworkDataStream::NetworkDataStream;

void onPacketReceived(DataPacket& dataPacket) override
{

LOG_TRACE << "Received packet " << dataPacket; // local log facility
NetworkDataStream::onPacketReceived(dataPacket); // Delegate to base.

}
};

Implementing a strong typedef

Classic typedef declarations — just like C++11 using declarations (see Section 1.1.“using
Aliases” on page 133) — are just synonyms; they offer absolutely no additional type safety

2A discussion of this topic is planned for lakos2a, section 4.7.
3A discussion of this topic is planned for lakos2b, section 4.6.

541

lorihughes
Cross-Out

lorihughes
Inserted Text
partial implementation




