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Section 2.1 C++11 Inheriting Ctors

tains data, constructors, and pure virtual functions.2 Such inheritance, known as imple-
mentation inheritance, is decidedly distinct from pure interface inheritance, which
is often the preferred design pattern in practice.3 As an example, consider a base class,
NetworkDataStream, that allows overriding its virtual functions for processing a stream of
data from an expanding variety of arbitrary sources over the network:
class NetworkDataStream
{
private:

// ... (member data)

public:
explicit NetworkDataStream(TCPConnection* tcpConnection);
explicit NetworkDataStream(UDPConnection* udpConnection);
explicit NetworkDataStream(RawDataStreamHandle* rawDataStreamHandle);

virtual ~NetworkDataStream();

virtual void onPacketReceived(DataPacket& dataPacket) = 0;
// Derived classes must override this method.

};

The NetworkDataStream class above provides three constructors, with more under develop-
ment, that can be used assuming no per-packet processing is required. Now, imagine the
need for logging information about received packets (e.g., for auditing purposes). Inherit-
ing constructors make deriving from NetworkDataStream and overriding (see Section 1.1.
“override” on page 104) onPacketReceived(DataPacket&) more convenient because we
don’t need to reimplement each of the constructors, which are anticipated to increase in
number over time:
class LoggedNetworkDataStream : public NetworkDataStream
{
public:

using NetworkDataStream::NetworkDataStream;

void onPacketReceived(DataPacket& dataPacket) override
{

LOG_TRACE << "Received packet " << dataPacket; // local log facility
NetworkDataStream::onPacketReceived(dataPacket); // Delegate to base.

}
};

Implementing a strong typedef

Classic typedef declarations — just like C++11 using declarations (see Section 1.1.“using
Aliases” on page 133) — are just synonyms; they offer absolutely no additional type safety

2A discussion of this topic is planned for lakos2a, section 4.7.
3A discussion of this topic is planned for lakos2b, section 4.6.
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